APPENDIX B

Geodynamics Geophysical Survey

Wrightsville Beach Coastal Storm Risk Management Emergency Repair – Evaluation of Borrow Area Alternatives

New Hanover County, North Carolina

JANUARY 2023

Prepared by:

Environmental Resources Section U.S. Army Corps of Engineers, Wilmington District

Wrightsville Beach Cultural Resource Geophysical Survey March – April 2022

310 Greenfield Dr., Suite A, Newport NC 28570

Prepared for:

US Army Corps of Engineers.

geodynamics 0

CONTENTS

1.0	Introduction		I
1.1	Project Desc	ription1	l
1.2	Project Area	1	l
1.3	Report Purpo	ose1	l
2.0	Survey Appr	oach2	2
2.1	Equipment	2	2
2.	1.1 Vessels		2
2.	1.2 Hardwar	re2	2
2.	1.3 Software	e3	3
2.2	Geodesy	4	ļ
2.3	Project Sche	edule and Weather5	5
2.4	Personnel	7	7
3.0	Methodology	/	3
3.1	Acquisition	8	3
3.	1.1 Navigati	ion and Positioning8	3
3.	1.2 Bathyme	etry9)
3.	1.3 Sub-bot	tom Profiling11	l
3.	1.4 Side Sca	an Sonar11	l
3.	1.5 Magneto	ometer/Gradiometer12	2
3.2	Processing		2
3.	.2.1 Navigati	ion and Sensor Positioning12	2
3.	.2.2 Bathyme	etry13	3
3.	2.3 Sub-bot	tom Profiling15	5
3.	.2.4 Side Sca	an Sonar15	5
3.	.2.5 Magneto	ometer/Gradiometer)
4.0	Quality Assu	irance and Quality Control17	7
4.1	Bathymetry .		7
4.2	Geophysical		l
5.0	Results		3
5.	1.1 Bathyme	etry23	3
5.	1.2 Sub-bot	tom Profiling25	5
5.	1.3 Side-Sc	an Sonar27	7
5.	1.4 Magneto	ometer/Gradiometer)
Appe	ndix 1: Patch	and Verification Reports	3
Appe	ndix 2: Surve	y Control)
Appe	ndix 3: Surve	y Notes	I
Appe	ndix 4: Officia	al Scope of Work59)

List of Figures

Figure 1. Map displaying project area1
Figure 2. Tidal and meteorological conditions during survey from Wrightsville Beach, NC - Station
ID: 86581637
Figure 3: R/V Benthos
Figure 4: POS MV OceanMaster9
Figure 5: Overview of L-band satellite beams and their coverage areas9
Figure 6: R/V Benthos MBES sonar heads over-the-side mount during dimensional control survey
March 202110
Figure 7: AML Minos-X sound speed profiler used on R/V Benthos10
Figure 8: Edgetech SB-216S sub-bottom profiler11
Figure 9: Edgetech 4205 side-scan sonar (image provided by Edgetech)12
Figure 10: Stock image of Geometrics G-882 Transverse Gradiometer12
Figure 11: Major steps in Bathymetric Data Processing14
Figure 12: Major Steps for Side Scan Sonar Data Processing16
Figure 13: Histogram of the values of the difference surface between the 30 m set lines and the
crosslines17
Figure 14: Distribution of uncertainty for the final bathymetric surface
Figure 15: Node density analysis for the Wrightsville Beach bathymetric dataset20
Figure 16: TVU analysis based upon NOAA HSSD specifications20
Figure 17: Oasis Montaj generated statistics for the average altitude of each recorded TVG survey
line
Figure 18: Oasis Montaj generated statistics for the average speed for each TVG survey line. 22
Figure 19: Oasis Montaj generated plots for the port magnetometer for Line 4122
Figure 20: Oasis Montaj generated plots for the starboard magnetometer for Line 4123
Figure 21. Multibeam bathymetry gridded at 3 ft resolution25
Figure 22: Bottom-tracked sub-bottom file, depicting the first acoustic return, the seafloor26
Figure 23: 3D rendering of intersecting sub-bottom lines within the WBCS survey extent with no
gains applied. Green lines are equally spaced every 5 ft. The strong reflector at ~50 ft is a multiple.
Figure 24: Tracklines of sub-bottom data collected
Figure 25: Side-scan sonar data mosaiced at 0.5 ft resolution28
Figure 26: Contacts detected in side-scan sonar data29

Figure 27: Polygons depicting areas of high concentrations of contacted identified as tires.....30

List of Tables

Table 1: General Vessel Specifications of the R/V Benthos.	.2
Table 2: Survey equipment utilized for the project	.2
Table 3: Software used during survey	.3
Table 4: NCCH Continuously Operating Reference Station	.4
Table 5: Survey activities throughout the project	.5
Table 6: A list of all survey personnel and management staff for this project	.7

geodynamic an NV5 company

1.0 INTRODUCTION

1.1 Project Description

Geodynamics was contracted by the United State Army Corps of Engineers (USACE) Wilmington District to provide hydrographic surveying services for an area encompassing approximately 4.45 square miles offshore of Wrightsville Beach, North Carolina. This included conducting a high-resolution geophysical survey area nearshore Wrightsville Beach using multibeam echosounder (MBES), sub-bottom profiler (SBP), Transverse Gradiometer (TVG) and side scan sonar (SSS) sensors for seafloor and subseafloor investigations across 30 m (~98 ft) spaced survey lines.

1.2 Project Area

The survey area spans the shoreline of Wrightsville Beach, NC from Masonboro Inlet to approximately 2.5 NM south of the inlet. The survey block extends from shore approximately 1.7 to 3.75 NM and spans approximately 2.3 NM in length. Figure 1 shows the survey area and 30 m spaced planned survey lines along with the 8 intersecting quality control crosslines spaced at 500 m.

Figure 1. Map displaying project area.

1.3 Report Purpose

This report provides a description of all survey activity including acquisition and processing methodologies, procedures, and quality control/quality assurance processes. Atmospheric and environmental conditions as well as summarized activities for each day of acquisition are

geod an NV5 company

included. Survey control and survey geodetics are also included in this report. A general discussion of results, including notable features identified in the data, is provided to aide further application of these products.

2.0 SURVEY APPROACH

2.1 Equipment

2.1.1 Vessels

The Research Vessel (R/V) Benthos (Table 1), owned and operated by Geodynamics, is a vessel of opportunity well suited for this multi-sensor survey. R/V Benthos was mobilized with all sensors at Geodynamics' headquarters in Newport, North Carolina, and all sensor calibrations were verified before transit to the survey site in Wrightsville Beach, North Carolina.

General Vessel Specifications				
Vessel name	R/V Benthos			
Owner	Geodynamics			
Dimensions	34 x 10.5' x 2.5'			
USCG	Designated Research Vessel			
Flag	U.S.			
Registry	North Carolina			
Reg No	NC-8224 DW			
Tonnage	15			
Lab space	3 Operator Stations			
Lavatory	Full head			
Min / Max Speed	2.5 / 45 knots			
Propulsion	2 x 300HP Yamaha Outboard Motor			
Auxiliary Power	8 kilowatt Westerbeke Generator			
Fuel Cap.	280 gallons			
GPS	Simrad			
Magnetic Compass	Richie			
Radar	Simrad 4G			
Autopilot	Simrad AP-28			
VHF	Simrad R-25			
Internet	Pepwave MAX			

Table 1: General Vessel Specifications of the R/V Benthos.

2.1.2 Hardware

Table 2 lists the survey equipment used for this survey.

Table 2: Survey equipment utilized for the project.

Hardware Equipment Function Manufacturer Model	Hardware Equipment	Function	Manufacturer	Model
--	--------------------	----------	--------------	-------

÷

	Primary GNSS Receiver - Positioning and Orientation System for Marine Vessels (POS MV)	Position/Attitude/Heading	Applanix	320 v5
tude	Primary GNSS Antenna (port)	Position/Attitude/Heading	Trimble/ Aeroantenna	540AP
א & Atti	Secondary GPS-GNSS Antenna (starboard)	Position/Attitude/Heading	Trimble/ Aeroantenna	540AP
atior	Inertial Motion Unit (IMU)	Position/Attitude/Heading	Applanix	IMU-65
avig	2 GPS Cables (20 m)	Position/Attitude/Heading	Trimble	n/a
z	IMU Cable (30 m)	Position/Attitude/Heading	Applanix	IP68
	Cellular Internet	Mobile Internet	Verizon	SIM Card
	Fugro Marinestar G2+	SBAS Corrections	Fugro	n/a
	Side Scan Sonar	Object Detection	Edgetech	4205
SSS	SSS Topside Unit	Acquisition	Edgetech	4205
	SSS Deck Cables	SSS Telemetry	Edgetech	n/a
	SSS Hydraulic Winch	Transducer Deployment	Pullmaster	PL2
	Sonar Processing Unit (PU)	Bathymetry	Kongsberg	2040C PU
	2 15m Sonar Cables	Bathymetry	Kongsberg	EM2040
MBES	Surface Sound Velocimeter	Bathymetry	Applied Microsystems	Micro Sound Velocity (SV)
	Sound Profile Velocimeter	Bathymetry	Applied Microsystems	Minos-X
	2 Sonar Heads	Bathymetry	Kongsberg	2040C-Dual Head
F	CHIRP Sub-bottom Profiler	Imagery/Geology	Edgetech	216S
ottor	SBP J-Frame Winch	Transducer Deployment	Warn	VRX 25-S
q-qn	SBP Topside Unit	Acquisition	Edgetech	3100-P
Ō	SBP deck cables (30m)	SBP Telemetry	Edgetech	n/a
ieto	Marine Magnetometer	Marine Archeology	Geometrics	G-882
Magn metei	TVG Frame	Marine Archeology	Geometrics	1.5 m TVG Frame, straight tow

2.1.3 Software

Table 3 lists the software used for data acquisition.

Table 3: Software used during survey

Software	Function	Version	Manufacturer

geodynami an NV5 company

Qinsy	Navigation management	9.4.4	QPS
POSView	Navigation and attitude	10.5	Applanix
SIS	MBES Data Acquisition and Patch Test	4.3.2	Kongsberg
Seacast	Sound Velocity	4.3	AML
Sound Speed Manager	Sound Velocity	-	CARIS
Discover	SSS and Chirp SBP Data Acquisition	41.0.1.116	Edgetech
MagLog Lite	Magnetometer Data Acquisition	-	Geometrics
Excel	Field Notes	2018	Microsoft

2.2 Geodesy

Data acquired onboard both RV Benthos utilized the Fugro Marinestar G2+ SBAS (Satellite Based Augmentation System). This system provides decimeter resolution both horizontally and vertically in real-time. Marinestar G2+ is a global SBAS and is therefore referenced to the ITRF2014 (International Terrestrial Reference Frame of 2014).

All data have been transformed into the NAD83 (2011) coordinate reference frame, and into the North Carolina State Plane system (Feet, WKID: 3200), either onboard during acquisition through Qinsy Online transformations, or during post-processing. Individual routines for each sensor's transformation and projection can be found in their respective sections.

The NAD83 (2011) North Carolina State Plane Feet coordinate system/projection were verified daily using RTK 2 m pole checks on established and verified benchmarks within the North Carolina Continually Operating Reference Station (NC CORS) network. Static observable data for the Castle Hayne (NCCH) station was used during post processing.

All delivered data and coordinates provided are relative to NAD 1983 (2011) North Carolina State Plan US Survey Feet in the horizontal plane and NAVD 1988 (using Geoid 12B) in the vertical plane.

Coordinate	HCS/VCS	Coordinate Value
Latitude	NAD 83 (2011)	34 20 40.22863 N
Longitude	NAD 83 (2011)	077 52 29.89899 W
Ellipsoid Ht	NAD 83 (2011)	-22.085

Table 4: NCCH Continuously Operating Reference Station

geodynamics AN NV5 COMPANY

2.3 Project Schedule and Weather

Survey activities were conducted between March 5 and April 12 of 2022. There was a total of 16 active survey days. Table 5 shows the general timeline of acquisition activities.

Date	Julian Day	Description of Survey Operations
3/5/2022	64	RV Benthos MBES, SSS, chirp SBP, MAG on polygon 100' lines
3/13/2022	72	RV Benthos MBES, SSS, chirp SBP, MAG on polygon 100' lines
3/14/2022	73	RV Benthos MBES, SSS, chirp SBP, MAG on polygon 100' lines
3/15/2022	74	RV Benthos MBES, SSS, chirp SBP, MAG on polygon 100' lines and MBES only on patch test area AR370
3/16/2022	75	RV Benthos MBES, SSS, chirp SBP, MAG on polygon 100' lines
3/17/2022	76	RV Benthos MBES, SSS, chirp SBP, MAG on polygon 100' lines
3/18/2022	77	RV Benthos MBES, SSS, chirp SBP, MAG on polygon 100' lines
3/21/2022	80	RV Benthos MBES, SSS, chirp SBP, MAG on polygon 100' lines
3/22/2022	81	RV Benthos MBES, SSS, chirp SBP, MAG on polygon 100' lines
3/23/2022	82	RV Benthos MBES, SSS, chirp SBP, MAG on polygon 100' lines
3/27/2022	86	RV Benthos MBES, SSS, chirp SBP, MAG on polygon 100' lines
3/28/2022	87	RV Benthos MBES, SSS, chirp SBP, MAG on polygon 100' lines
3/29/2022	88	RV Benthos MBES, SSS, chirp SBP, MAG on polygon 100' lines
4/3/2022	93	RV Benthos MBES, SSS, chirp SBP, MAG on polygon 100' lines
4/11/2022	101	RV Benthos MBES, SSS, chirp SBP, MAG on polygon 100' lines and crosslines
4/12/2022	102	RV Benthos MBES, SSS, chirp SBP, MAG on polygon 100' lines, crosslines, and recovery lines

Table 5: Survey activities throughout the project

The tide and meteorological observations for each day of survey were collected at the nearest NOAA tide station, Wrightsville Beach, NC (Figure 2).

• Winds 🕂 Gusts

NOAA/NOS/Center for Operational Oceanographic Products and Services

NOAA/NOS/CO-OPS Air Temperature at 8658163, Wrightsville Beach NC From 2022/03/05 00:00 GMT to 2022/04/12 23:59 GMT

NOAA/NOS/CO-OPS Barometric Pressure at 8658163, Wrightsville Beach NC From 2022/03/05 00:00 GMT to 2022/04/12 23:59 GMT

geodyn AN NV 5 COMPANY

NOAA/NOS/CO-OPS Verified Hourly Heights at 8658163, Wrightsville Beach NC From 2022/03/05 00:00 GMT to 2022/04/12 23:59 GMT

Figure 2. Tidal and meteorological conditions during survey from Wrightsville Beach, NC - Station ID: 8658163

2.4 Personnel

Table 6: A list of all survey personnel and management staff for this project.

Participant	Title	Affiliation
Chris Freeman President, Point of Contact		Geodynamics
Dave Bernstein Program Director		Geodynamics
Josh Landry Operations Director		Geodynamics
Kurt Baker	Survey Manager / Project Manager	Geodynamics
Josh Savage	Vessel Operator	Geodynamics
Nolan Day	Hydrographer	Geodynamics
Tariq Moya	Hydrographer	Geodynamics
Davis Batten	Hydrographer / Processor	Geodynamics
Rachel Dudas	Hydrographer	Geodynamics
Clay Walker	Hydrographer	Geodynamics
Brooke Wheatley	Processor	Geodynamics

Rebekah Gossett	Processor	Geodynamics
Evalynn Barbare	Processor	Geodynamics

3.0 METHODOLOGY

3.1 Acquisition

Acquisition for the Wrightsville Beach Geophysical Survey was conducted with the R/V Benthos (Figure 3). Vessel survey systems rely on an Applanix POS MV V5 for navigation, attitude, and heading. Physical survey systems consist of over the side multibeam sonar mounts and A-frame with hydraulic and electric winch controls for geophysical survey gear deployment and recovery.

Figure 3: R/V Benthos

3.1.1 Navigation and Positioning

The Applanix Positioning and Orientation System for Marine Vessels (POS MV) Ocean master provided georeferencing and motion compensation to all hydrographic sensors. This system is permanently installed on the R/V Benthos. The POS MV integrate vessel attitude with horizontal positioning information obtained from the dual antenna spread, supporting both Global Positioning System (GPS) and GNSS satellites, and directly relays attitude data to Kongsberg's Seafloor Information Systems (SIS), QPS Qinsy acquisition software, and the MAGLOG LITE acquisition software. The POS MV provides real-time roll and pitch accuracy RMS to 0.02°, heading to 0.02° (with a 2 m antenna baseline), heave accuracy to 5 cm or 5% (whichever is greater), and decimeter positional accuracy when using Fugro Marinestar G2+ SBAS corrections.

geodynami

Figure 4: POS MV OceanMaster

Positioning for all sensors was aided by Fugro's Marinestar GPS and GNSS services. Marinestar provides sub-meter positional accuracy worldwide based upon Fugro's global network of reference sites and geostationary satellites and integrates seamlessly within the POSView acquisition software. Qinsy Online software integrates POSView position and attitude data to provide motion corrected positions for relevant nodes such as the MBES sensor target centers and tow points for sensor positions derived from layback.

Figure 5: Overview of L-band satellite beams and their coverage areas.

The POSView software by Applanix was used with the POS MV system. This software provides a tightly-coupled integration of the attitude measurements recorded by the IMU and the SBAS augmented position measurements recorded by the GNSS antennas. POSView allowed the survey technician to monitor the attitude and positional accuracy throughout the survey in real time. POSView logged a POSPac file which contained all attitude, positioning, and error estimates of real-time attitude and positioning which allows for post processing in the event that improved positional accuracy is required.

3.1.2 Bathymetry

Bathymetry was collected on R/V Benthos with a dual head Kongsberg EM2040C system on an over-the-side mount from the port quarter of the vessel. The sonar heads are secured to the

geodynam AN NV5 COMPANY

vessel in a fixed and pre-defined location using industrial stainless-steel clamps. The precise positioning of the MBES heads to the IMU were established during a dimensional control survey in March of 2021. The current configuration was most recently patch tested and verified in November of 2021. The patch test and verification surveys were conducted to ensure self-alignment (sensor bias with respect to heading, pitch, and roll errors) as well as comparison against previously validated bathymetric data, both internal (Geodynamics) and external (USACE).

Figure 6: R/V Benthos MBES sonar heads over-the-side mount during dimensional control survey March 2021.

Throughout the survey multiple dynamic factors were monitored to ensure accurate and precise bathymetric data. The POS MV provided real-time vessel attitude, tide, and water levels for both real-time monitoring and post-processing. Sound velocity profiles were collected via the AML Minos-X (Figure 7), processed in SeaCast, and loaded directly into SIS for accurate beam forming and sound speed correction during acquisition. Sound speed near the surface was monitored in real-time at the sonar heads using an AML MicroSV. When the sound speed at the head changed by more than 2 m/s from the profile collected, another profile was acquired. All attitude, position, SV, and sounding data was recorded in SIS as *.all files.

Figure 7: AML Minos-X sound speed profiler used on R/V Benthos.

geodynami an NV5 company

MBES data were collected in both Qinsy and SIS. The Qinsy interface provided accurate line tracking and navigation view, MBES coverage view and was used for real-time quality assurance/quality control (QA/QC), standard deviation models of overlapping data. The SIS software was used to define the sonar settings and parameters, as well as make changes to survey configuration or operation.

3.1.3 Sub-bottom Profiling

The R/V Benthos surveyed exclusively with the Edgetech CHIRP (Compressed High Intensity Radiated Pulse) SB-216S towed sub-bottom profiler. The 216S towed body is capable of 6-10 cm vertical resolution and up to 6 m of penetration in course and calcareous sand. The system was surface towed using Norwegian buoys at a fixed, measured distance from the J-frame and roughly 2 m below the sea surface. The QPS Qinsy software suite was used during survey to serve as a relational interface between the vessel navigation and the towpoint to provide manual layback corrected positions to the SBP controller software, Discover SBP.

Figure 8: Edgetech SB-216S sub-bottom profiler.

The Discover SBP software provides a scrolling display of sub-bottom penetration and resolution, allowing for real-time QA/QC. The CHIRP system was set to sweep from 2.0 - 15.0 kHZ at 20 ms and 75-100% power with a ping rate maximized for optimal resolution. During survey, display-only gains could be manipulated to improve data visualization. The sub-bottom data were recorded in Edgetech's proprietary JSF format, along with the SEG-Y and XTF formats.

3.1.4 Side Scan Sonar

As with SBP, the Qinsy software suite was used during survey to serve as an interface between the vessel navigation, the towpoint, and the Edgetech 4205 side scan sonar towfish to provide layback corrected positioning and heading to the SSS controller software, Discover SSS. Unlike SBP, the SSS towfish layback changed throughout survey, and the manual layback driver within Qinsy was used to adjust the survey the cable payout for providing the final layback-corrected position to Discover SSS. Discover provides a waterfall data display for real-time QA/QC monitoring of both channels acquired. Frequencies were set at 850 kHz (channels 5 and 6 at 50 m range) for the entirety of acquisition. Towfish altitude was adjusted to maintain between 10% and 20% of the SSS data range (5 to 10 m above the seafloor) where possible. Discover logged all raw sensor data along with UTC time and navigation stamps in Edgetech's proprietary JSF file format.

geodynamic AN NV 5 COMPANY

Figure 9: Edgetech 4205 side-scan sonar (image provided by Edgetech)

3.1.5 Magnetometer/Gradiometer

Two G-882 magnetometers with depth sensors and altimeter are installed in a 1.5 m wide Transverse Gradiometer Frame. The Gradiometer was towed astern of the vessel. The altitude is controlled by paying out or brining in tow cable sufficient maintain the survey requirements. The gradiometer was towed at sufficient (> 3x vessel length astern of the vessel) to avoid interference from the vessel. The TVG layback changed throughout survey, and the manual layback driver within Qinsy was used to adjust the survey the cable payout for providing the final layback-corrected position for post-processing.

Figure 10: Stock image of Geometrics G-882 Transverse Gradiometer

3.2 Processing

3.2.1 Navigation and Sensor Positioning

The post-processed horizontal datum for this project is the NAD83 (2011) with projected into the North Carolina State Plane Feet grid. The vertical datum for this project is the NAVD88 datum

using geoid 12b. As data were collected within the ITRF2014 frame using the Fugro Marinestar service, the POSPac MMS (Mobile Mapping Solutions) software was utilized for datum transformation during attitude and positioning post-processing.

POSPac MMS is a user-friendly suite of tools used to create an accurate solution of position, orientation, and dynamics from the GNSS and IMU data collected with the POS MV. Raw POS data collected in the field is imported into POSPac MMS and a SBET (Smoothed Best Estimate of Trajectory) is created using various methods of post-processing. The post-processed SBET is then integrated into the multibeam sonar data to enhance horizontal and vertical accuracy and the reliability of the GPS data.

The POSPac MMS post-processing method utilized for this project was "IN-Fusion Single Base". The "IN-Fusion Single Base" utilizes corrections from a land based base station operating on an established coordinate. For this project, the base station corrections were provided by the North Carolina CORS NCCH and thus the SBET was exported in the NAD83 (2011) frame.

The positioning of the side-scan, TVG, and sub-bottom sonars were calculated using offset factors applied within the Qinsy software. The manual layback position of the sub-bottom and side-scan was calculated and transmitted to Discover. For both outputs the Qinsy software performed a real-time transformation of the ITRF2014 positional data and provided the offset position of the sensor in the NAD83 (2011) frame.

3.2.2 Bathymetry

All MBES data were post-processed using the Applanix POSPac MMS software, using the NCCH (North Carolina Castle Hayne) static observable data. The NC CORS Network is based in the NAD83 (2011) frame, and therefore the SBET (Smoothed Best Estimate of Trajectory) used for MBES processing was also based in the NAD83 (2011) frame, thus properly transforming the multibeam data into the NAD83 (2011) frame during MBES processing.

All bathymetric survey data were processed using CARIS Hydrographic Information Processing Systems (HIPS) and Sonar Information Processing System (SIPS) software and gridded in a Combined Uncertainty and Bathymetry Estimator (CUBE) surface at a final resolution of 3 ft. The POSPac file was processed and computed into an SBET, which was applied to the necessary bathymetric data along with GPS Tides and sound velocity profiles. The processing workflow is in Figure 10 below.

Figure 11: Major steps in Bathymetric Data Processing

The CARIS vessel configuration file, called the HIPS Vessel File, is an Extensible Mark-up Language (XML) file that can describe details of the installation and calibration of the instruments installed and their precise positioning relative to each other and the vessel's reference frame. Embedded information within the HVF is used by multiple processes in CARIS to merge sensors, offsets and calculate sounding uncertainty. For this project, measured sensor offsets and calculated patch test offsets were applied in SIS or POSView prior to acquisition, therefore, the "apply" option for the offset values in the HVF were set to "no". However, sensor offsets are still placed in the HVF as well as other manufacturer specifications to properly account for TPU.

The raw multibeam bathymetry data collected in SIS provides rough estimates of water depth and bathymetry. To view the raw data and water levels as it was collected, a zero-tide must be applied which neglects all tidal influences on depths. Corrections applied to the raw data in real-time included sound speed corrections from the most recent and appropriate sound speed cast, as well as initial heave, pitch, roll, and heading corrections from the POS MV, but become fully integrated during processing steps.

Tidal observation data must be loaded for every track line before the soundings can be viewed as corrected depths and positions, correcting for astronomical and meteorological changes in water levels. Real-time tidal and water level changes were corrected by computing "GPS Tides" in CARIS. This procedure uses the GNSS height and vessel heave to dynamically deduct the vessel's vertical displacement through the water column as well as correct for the astronomical changes in water level heights over the course of the survey.

A CUBE surface is a model which uses multiple hypotheses to represent potential depth variances along the seafloor based on a TPU that is calculated in CARIS. The CARIS TPU module computes horizontal and vertical uncertainty values, requiring user-entered offsets, estimated error values for the tide, sound speed measurements and published errors from equipment specifications. TPU calculations are used in the CUBE algorithm to calculate a surface where 'nodes' or 'tiles' are assigned to soundings with the lowest vertical uncertainties and are internally self-consistent.

Upon initial QC inspections and reviews for targets or features on the seafloor, a combination of swath and surface filters were executed in CARIS to reduce manual editing. The main filter used was a swath filter to remove erroneous outer beams.

One of the last steps of multibeam processing is to manually "clean" or remove erroneous data inherent to all echosounders. This is commonly due to aeration, pelagics, multiples, or outer swath noise or artifacts. Soundings were edited using a combination of Subset Editor and Swath Editor. Swath Editor provided an initial editor to review and clean individual lines, providing a slice that preserves both large and small-scale features in the swath and reveals true outliers. The erroneous data were flagged as rejected as to not be included in the final surface. The Swath Editor also provided a means for reviewing the navigation and attitude data for spikes or gaps. Subset Editor was used as a means of reviewing the data and cleaning erroneous soundings. Overlapping lines are loaded into the Subset Editor, providing the processor with a confidence check for detecting features, assessing systematic errors, flagging fliers, and reviewing rejected soundings. This technique provides the user flexibility to review the data in both 2-dimensional (2D) and 3-dimensional (3D) views. Surfaces were constantly recomputed and reviewed for remaining fliers and cleaned as necessary.

The 3 ft CUBE surface was exported after final QC review as a floating point GeoTiff raster in NAD83 (2011) NC State Plane Meters, NAVD88 (m), and converted to NC State Plane Feet in XY and feet for vertical and is provided as a raster dataset compatible in ArcGIS 10.0 software.

3.2.3 Sub-bottom Profiling

The signal-to-noise ratio (S/N) of the raw data was of sufficient quality to permit the data to be processed using the following simple 4-step workflow:

Step 1 – JSF Import: Import JSF files with initial scalar to optimize full envelope to CSF file in SonarWiz

Step 2 – Review Navigation and Bottom Track: Layback was analyzed and adjusted as needed using bathymetric surface to align with features in SBP. Seafloor was bottom tracked to develop surface for datum alignment.

Step 3 – Datum Alignment: Data were converted from CSF to SEG-Y, then imported SEG-Y with regional bathymetric grid to align the digitized seafloor to the NAVD88 datum.

3.2.4 Side Scan Sonar

SSS data from the Edgetech 4205 was processed in SonarWiz according to the generalized processes in Figure 15 below.

Figure 12: Major Steps for Side Scan Sonar Data Processing

The JSF were imported into SonarWiz, and the subsequent CSF files were created with navigation smoothed. Navigation and layback were reviewed by comparing overlapping data and comparing to the bathymetric surface and backscatter imagery. Layback was applied in postprocessing based upon alignment to overlapping data and comparison to real-time layback calculations within Qinsy. The SSS imagery were then opened in the bottom track utility in SonarWiz to remove the water column. An Empirical Gain Normalization (EGN) filter was applied to all SSS lines to improve and harmonize gains. A de-stripe filter was also applied to reduce artifacts from vessel motion and the water column. Once the imagery was optimized for viewing and analysis, each line was viewed in waterfall for targets. A mosaic of the imagery with 0.5 ft resolution was created in SonarWiz and exported to ArcGIS Pro as a 3-Band raster.

3.2.5 Magnetometer/Gradiometer

TVG Navigation Editing

Data processing was conducted using Oasis Montaj and the UXO-Marine Module. Once imported, the navigation data was checked for spikes or duplicates in both the position and altitude. Any spikes identified will be manually removed from the data with resultant gaps interpolated across to a limit agreed with the client. Navigation and Altitude data flags were created for any sections where the navigation quality or gradiometer altitude was outside the specified contractual limits. These flags were used to remove such data from being included in any of the gridded or coverage results, as well as being exportable to identify data gaps for infill/re-runs.

TVG Signal Processing

The magnetometer data was checked for spikes, which are typically caused by electrical interference or motion. The data from each sensor was levelled using a median correction. A background field was calculated by applying a series of non-linear filters to fit a long wavelength curve to each line. This long wavelength curve is subtracted from the altitude corrected data to leave a residual magnetic field profile containing only the short wavelength anomalies. This was first generated by running a set of standard filters. Each line was reviewed on an individual basis and the filters were adjusted as appropriate. The process was repeated with the first pass aiming to generate a residual grid highlighting geology, and the second to generate a residual grid highlighting anomalies. The calculated residual magnetic field is used to calculate gradients in the X (across track) & Y (along track) directions with a vertical derivative used to calculate the gradient in the Z (vertical) direction. The component gradients are to be used to calculate the analytic signal. This is the 3D gradient of the residual magnetic field, quantifying the rate of change of the

magnetic field. The analytic signal is effective for discriminating targets as all anomalies become positive peaks.

4.0 QUALITY ASSURANCE AND QUALITY CONTROL

4.1 Bathymetry

In this survey, multibeam bathymetric data were acquired along 30 m set lines throughout the survey area using R/V Benthos. Additionally, crosslines were collected for quality control and to aid in the interpretation of the sub-bottom data. The final multibeam surface was cross-checked against the crossline data as well as the existing NOAA nautical chart (11539). To complete this analysis, the NOAA vDatum software was utilized to provide the vertical transformation from MLLW (chart datum) to NAVD88 (project datum). These differences were calculated in CARIS and ArcGIS Pro respectively and produced the results seen below.

Figure 13: Histogram of the values of the difference surface between the 30 m set lines and the crosslines.

Figure 14: Chart comparison between NOAA provided nautical chart (11539) and the bathymetric dataset.

Additionally, the Caris processing software has multiple methods by which ensure the data is sufficient in quality and quantity given project specifications. The "Uncertainty" graph provides visual information regarding the summation of the potential errors within the dataset as described within the processing section. The "Data Density" graph illustrates the number of soundings associated with each grid node for the deliverable bathymetric dataset. For this project, the bathymetric data were extremely dense given the 30m line spacing.

Finally, a custom TVU assessment based upon NOAA HSSD standards used for nautical charting was conducted on the multibeam dataset. This assessment calculated the vertical uncertainty as a fraction of the allowable TVU based upon NOAA HSSD standards.

Figure 15: Distribution of uncertainty for the final bathymetric surface.

Figure 16: Node density analysis for the Wrightsville Beach bathymetric dataset.

Figure 17: TVU analysis based upon NOAA HSSD specifications.

geodyn AN NV 5 COMPANY

4.2 Geophysical

This section highlights results obtained from Oasis Montaj during the processing of the magnetometer data. The primary purpose of this section is to illustrate the proper altitude and speed were maintained during the course of the survey. Additionally, plots showing the alignment between the field values obtained by each magnetometer for multiple surveys lines provide confidence in each individual sensor's field.

Figure 18: Oasis Montaj generated statistics for the average altitude of each recorded TVG survey line.

Mean TVG Survey Speed

Figure 19: Oasis Montaj generated statistics for the average speed for each TVG survey line.

Figure 20: Oasis Montaj generated plots for the port magnetometer for Line 41.

5.0 RESULTS

The results from the geophysical survey were consistent across survey platforms. In general, multibeam bathymetry and backscatter imagery aligned well to the side-scan data, and features identified within side-scan data and magnetic data were consistent. After processing and quality control routines this dataset is sufficient to perform a cultural resource assessment.

5.1.1 Bathymetry

Bathymetric data provided sufficient information to report water depths throughout the survey area at a 3 ft resolution. The MBES data covers elevations from -43 ft to -60 ft NAVD88. The data reveal a large area of apparent sand, outlined with softer appearing sediment extending to the northeastern and northwestern sections of the survey area. Along the northeastern edge of sandy substrate, there is a region of valleys composed of softer appearing sedimentation with a relief of approximately 1.5 m. Near the northwestern extent, a slight but pronounced area of relief is apparent. This region has been highlight within the data deliverable and within the screenshot image below.

geodynamics

Figure 22: Northwest extent showing vertical relief within the bathymetric dataset.

Figure 23. Multibeam bathymetry gridded at 3 ft resolution.

5.1.2 Sub-bottom Profiling

Sub-bottom data shows general features at the expected depths for the sensor. The data shows alignment and agreement when between intersecting lines when viewed within a 3-dimensional fence diagram. The intent of the sub-bottom profiler data was to assist in the identification of features identified within the MBES, SSS, and TVG datasets. As no features of concern were identified, the sub-bottom profiler data remains available for future analysis, however with no deliverables attached.

Figure 24: Bottom-tracked sub-bottom file, depicting the first acoustic return, the seafloor.

Figure 25: 3D rendering of intersecting sub-bottom lines within the WBCS survey extent with no gains applied. Green lines are equally spaced every 5 ft. The strong reflector at ~50 ft is a multiple.

Figure 26: Tracklines of sub-bottom data collected.

5.1.3 Side-Scan Sonar

Side-scan sonar data shows good agreement between reciprocal lines and of features observed in the bathymetry. The data presents areas of high return, indicating coarse sedimentation as well as areas of low return, suggesting softer, less consolidated sedimentation (Figure 22). Significant contacts detected in the dataset include numerous tires and debris (Figure 23). Contacts were predominately tires (6,343 of the 6,415 contacts).

Distribution of tires was quantified using the "Point Density" tool within the ArcGIS Pro software. For this analysis, the subset of targets identified as "tires" was selected. Parameters for this model were set to search a circular radius of an acre in area (~117 ft radius) and report the density in units of acres. This approach was taken to produce results The resulting dataset was then manually classified into 3 separate and distinct polygon shapefiles: low (1 -3 tires per acre), medium (4 – 20 tires per acre), and high (21 – 83) tires per acre.

Figure 27: Side-scan sonar data mosaiced at 0.5 ft resolution.

Figure 28: Contacts detected in side-scan sonar data.

5.1.4 Magnetometer/Gradiometer

The gradiometer data showed excellent agreement between the individual magnetometers, increasing the confidence of apparent magnetometer anomalies. The magnetometer data was gridded and the residuals contoured, with results consistent with the side-scan sonar data contacts. The central region of the survey extents showed a much higher quantity of magnetic returns as compared to the inshore and offshore extents. Additionally, the region directly to the northeast of the greatest accumulation of sonar targets contained many magnetic anomalies not directly associated with sonar targets. These locations are presumed to potentially be residual chain and cable debris from the originial securing of the the tire reefs.

Figure 30: Map showing gridded magnetic residuals. White indicates a neutral or regular magnetic signal, whereas blue and red highlight areas of magnetic anomalies.

Figure 31: Map showing the contours in 5 nT intervals from the gridded magnetic residual surface. This data is overlaid on the tire density map with side-scan data as a background.

geodynamics 0

APPENDIX 1: PATCH AND VERIFICATION REPORTS

geodynamics

Multibeam Sonar System Calibration RV Benthos BE_Patch_Verification_20211101.xlsx

		Site Information
Date	11/1/2021	
Site Location	Morehead City, NC	
Weather Conditions	Partly Cloudy	A. LASTRA
Wind Speed	6 kts	In Bay
Wind Direction	Ν	
Sea State	1-2 ft	
Latitude	34°43'10.33"N	Pour Section of the Alaska
Longitude	76°41'37.31''W	
Personnel	Cpt. Josh Savage, Morgan Smith, Dave Bernstein	Coogle Earth

Operational &Systems Information						
Sonar	Kongsberg EM2040C DualHead	Pr. Antenna	540AP: 17985			
Port Head	2549	Sc. Antenna	540AP: 17989			
STBD Head	2548	Surface Sound Speed	AML Oceanographic Micro X 7762			
Kongsberg PU	385406: 20188 & 20159	Surface Sensor	AML Oceanographic SV Xchange 204291			
SIS	Kongsberg 4.3.2	Sound Speed Profiler	AML Oceanographic Base X2 26045			
Kongsberg PU	385406: 20188 & 20159	Pressure Sensor	AML Oceanographic P Xchange 306187			
POS Unit	Applanix POS MV V5	Velocity Sensor	AML Oceanographic SV Xchange 206265			
100 0111	OceanMaster	Software	SeaCast 4.4.0			
POSView	10.2	Computer	Cincoze			
Firmware	Applanix POS MV Version 10.21	Operating System	Microsoft Windows 10 Pro: 10.0.19042			

Patch Test Values (SIS/QINSy)					
Component	Roll	Pitch	Yaw	Latency	
SH1 (PORT)	34.227	-0.294	359.495	-	
SH2 (STBD)	-35.823	-0.307	359.450		
Attitude 1, Com2	0.000	0.000	0.000	-	
Timing (Second)	-	2=2	-	0.000	

GAMS Parameters					
Category	Value		Baseline Vector		
Two Antenna Spread (m)	2.000	X (m)	-0.025		
Heading Cal. Threshold	0.500	Y (m)	1.999		
Heading Correction (deg)	0.000	Z (m)	-0.014		

Sonar Offsets / Biases (SIS/QINSy)						
Lever Arm	X (m)		Y (m)		Z (m)	
Ref. to IMU Target	0.000		0.000		0.000	
Ref. to Primary GNSS	-0.189		-1.018		-2.404	
Ref. to Vessel Lever Arm	-0.947		-1.662		1.314	

Page 1 of 6

geodynamics

geodynamics

Multibeam Sonar System Calibration RV Benthos BE_Patch_Verification_20211101.xlsx

POSMV Configuration					
Lever Arm	X (m)	Y (m)	Z (m)		
Ref. to IMU Target	0.000	0.000	0.000		
Ref. to Primary GNSS	-0.189	-1.018	-2.404		
Ref. to Vessel Lever Arm	-0.947	-1.662	1.314		
Ref. to Sensor 1	-0.947	-1.662	1.314		
IMU w.r.t. Ref. Frame (°)	0.000	0.000	0.000		
Target to Sensing Center	0.004	0.001	0.066		
Resultant Lever Arm	0.004	0.001	0.066		

Calibration Notes

This calibration was completed onboard the RV Benthos on 01 November, 2021 in a region of the Morehead City Port with a clear bottom feature and broad flat area near the project water depth. A series of lines were collected in accordance with the procedures laid out by the sonar equipment manufacturer, Kongsberg. Results were good and provide high confidence in the ability of this mobilization to produce high quality and repeatable data.

Page 2 of 6

geodynamics

Page 3 of 6

geodynamics

Page 4 of 6

geodynamics

Page 5 of 6

geodynamics

Page 6 of 6

geodynamics 0

APPENDIX 2: SURVEY CONTROL

			Sur	vey Control					
Project T	imeframe:	3/0	05/2022 - 4/14/20	22				GeoD	ynamics
	Project:	U.S. Army Cor	ps of Engineers W	ilmington Distr	ict - Wrightsvi	lle Beach (Cultural Res	ources Surv	ey
	urvey Location Wrightsville Reach New Hanover County, North Carolina								
-	larvey Location.	winghtsville b		er councy, non					
	Survey Crew:	Nola	in Day	Tariq	Моуа	Rache	l Dudas	Davis	Batten
		Clay	Walker						
						Units		Repeater l	Jse:
Coordinat	e System/Units:	NA	AD83 NC State Pla	ne		S	PF		N/A
	Vention	NAVD88	Casid	2012b					
	vertical:	Rec	celver	GPS An	tenna	Ra	adio	Radio Br	padcasting
Base Stat	tion Equipment:	Trim	ole R10	Trimbl	e R10	N	i/A	N	/A
	Ī	Notes: This project w	as conducted over a period	of 1.5 months during 1	imes of optimal weat	her and tidal co	onditions. Benchn	nark checks were	conducted using
		the NC CORS VRS net	work.						
			Base Sta	tion Inform	ation				
Designation:	NC CORS VRS NETWO	RK						1.4	
PID:	N/A		Access Marce	and and and	concernent forman	NOCH			
V order:	N/A		All Sur - All Su						
Geoid	2012b		2	Lower and		and the second sec			
St	ate Plane Coordinates								
Easting (X):	N/A					. freedow			
Northing (Y):	N/A			- web	Burlis PDB. We day Darks Towney	haorach			
Z:	N/A				Not should be some on	Jorr			
	NGS-84 Coordinates		~		4				
Longitude:	N/A		Notes: Network o	of continually c	perating base	stations u	used to prov	vide real-tir	ne kinematic
Latitude:	N/A		corrections to sur	vey units via t	he internet.				
Elevation (m):	N/A				•				
			Benchmark	Station Re	terence	SHERE	12.2		
Designation:	5 233				AN MARK	14			
H Order:	N/A			0 21	Carl Carl	1	States and the second		-
V order:	Second, Class D			040 MO.	192. 21	-			
Geoid:	2012b		6 225		3 福子	Sa		a state and	
St	ate Plane Coordinates		N. E.		3 B #	4 3	10		
Easting (X):	2359085.95		A CALE	Land L With	S. Sterre		and the second second		
Northing (Y):	172441.214			1. SANIOS	5	No. all	100 M	1	
Z{m):	6.25		all the	Constant's single	ALTEN.	A STATE		11	
Notor: Deast	ark in located and	ho couth	taining well for	A Mainham	Ronch David	eidge ·	ho Write		ido of the
bridge XY value	ark is located on t	ne southern re	from Geodynami	ie wrightsville	Beach Drawb	nage on t	ne wrights	ville beach :	side of the
and ber Al value	as are not publishe								
			Bench	mark Repor	t				
Date	Time	Weather	Benchmark	N	E	Z	ΔN	ΔE	ΔZ
3/5/2022	7:50	Partly Cloudy	S 233	172441.324	2359085.87	6.329	-0.110	0.083	-0.079
	Base Station Used:	NC CORS							
3/13/2022	15:04	Clear	S 233	172441.29	2359085.89	6.309	-0.076	0.058	-0.059
245.6	Base Station Used:	NC CORS		470.444 87-1	2250005	C 04 0	0.047	0.446	
3/15/2022	21:16	Liear NC CORC	5 233	1/2441.259	2359085.84	6.213	-0.045	0.112	0.037
2/16/2022	Duse station Used:	Clear	\$ 222	172441 262	2320082 04	6 244	-0.049	0.110	-0.094
3/10/2022	7:04 Base Station Liced		3 233	1/2441.202	2339003.04	0.344	-0.048	0.110	-0.094
3/17/2022	16.22	Partly Cloudy	\$ 233	172441 296	2359085.86	6 153	-0.082	0.086	0.097
5,17,2022	Base Station Used:	NC CORS	5200	1/2441.290	2333003.00	0.133	0.002	0.000	0.037
3/18/2022	22:05	Partly Cloudy	S 233	172441.285	2359085.89	6.075	-0.071	0.059	0.175
	Base Station Used:	NC CORS							
3/20/2022	13:18	Clear	S 233	172441.324	2359085.87	6.329	-0.110	0.083	-0.079
	Base Station Used:	NC CORS							

geodynamics 0

3/21/2022	19:40 Partly Cloudy	S 233	172441.319	2359085.83	6.190	-0.105	0.116	0.060
	Base Station Used: NC CORS							
3/22/2022	19:45 Partly Cloudy	S 233	172441.385	2359085.81	6.329	-0.171	0.137	-0.079
	Base Station Used: NC CORS							
3/23/2022	12:54 Overcast	\$ 233	172441.281	2359085.87	6.249	-0.067	0.085	0.001
	Base Station Used: NC CORS							
3/28/2022	17:32 Clear	S 233	172441.324	2359085.87	6.329	-0.110	0.083	-0.079
	Base Station Used: NC CORS							
3/29/2022	09:18 Partly Cloudy	S 233	172441.255	2359085.83	6.230	-0.041	0.117	0.020
	Base Station Used: NC CORS							
4/3/2022	21:09 Clear	S 233	172441.267	2359085.89	6.051	-0.053	0.056	0.199
	Base Station Used: NC CORS							
4/11/2022	17:05 Clear	S 233	172441.226	2359085.85	6.114	0.012	-0.105	-0.136
	Base Station Used: NC CORS							
GPS consistency (measured in feet)							
Average Easting (X) error -0.077							
Average Northing	g (Y) error 0.076							
Average Elevation	nerror -0.001							

geodynamics 2

APPENDIX 3: SURVEY NOTES

geodynamics 0

		Daily Survey Field Note	IS .			
Date:	3/5/2022	Day of Year:	64			
Time SOS (local):	8:05	Time EOS (local):	19:55			
Project: Wrightsville Beach Cultural Resources Survey						
Survey Location:	Location: 1-3 miles offshore of Masonboro Inlet					
Hydro Crew:	Nolan Day	Tariq Moya	Brett Bolton			
Atmospheric	Conditions		Water Co	onditions		
Sky:	Cloudy		Swel	ll: 2-3 ft		
Wind Speed:	5-10 KT		Choj	p: 0 - 0.5 ft		
Wind Direction:	NE		Tem	p: 40-50 F		
Temp:	50-60 F					
		Survey Activities				
Control						
		Control				
Benthos crew establish	ned survey control by c	Control hecking benchmark S 23	3 which is located on t	he south east side of		
Benthos crew establish the Wrightsville Beach	ned survey control by c draw bridge. A netwo	Control hecking benchmark S 23 rk of continually operation	3 which is located on t ng base stations (NC CC	he south east side of DRS) was used to		
Benthos crew establish the Wrightsville Beach provide real-time kiner	ned survey control by c draw bridge. A networ matic corrections to su	Control hecking benchmark S 23 rk of continually operation rvey units via the intern	3 which is located on t ng base stations (NC CC et.	he south east side of DRS) was used to		
Benthos crew establish the Wrightsville Beach provide real-time kiner	ned survey control by c draw bridge. A netwo matic corrections to su	Control hecking benchmark S 23 rk of continually operation rvey units via the intern Hydro	3 which is located on t ng base stations (NC CC et.	he south east side of DRS) was used to		
Benthos crew establish the Wrightsville Beach provide real-time kiner Nolan and Tariq checke	ned survey control by c draw bridge. A networ matic corrections to su ed benchmark S 233 be	Control hecking benchmark S 23 rk of continually operation rvey units via the intern Hydro efore the start of the sur	3 which is located on t ng base stations (NC CC et. vey day. At the dock th	he south east side of DRS) was used to ne crew set up the		
Benthos crew establish the Wrightsville Beach provide real-time kiner Nolan and Tariq check Minos SVP. The SBP mo	ned survey control by c draw bridge. A networ matic corrections to su ed benchmark S 233 be onitor was not displayi	Control hecking benchmark S 23 rk of continually operation rvey units via the intern Hydro efore the start of the sur ng, so Tariq went out an	3 which is located on t ng base stations (NC CC et. vey day. At the dock th d bought a DVI adapte	he south east side of DRS) was used to ne crew set up the r. We got all of the		
Benthos crew establish the Wrightsville Beach provide real-time kiner Nolan and Tariq check Minos SVP. The SBP m computers and softwa	ned survey control by c draw bridge. A networ matic corrections to su ed benchmark S 233 be onitor was not displayi res fired up and talking	Control hecking benchmark S 23 rk of continually operation rvey units via the intern Hydro efore the start of the sur ng, so Tariq went out an g with the sensors. The c	3 which is located on t ng base stations (NC CC et. vey day. At the dock th d bought a DVI adapte rew got underway and	he south east side of DRS) was used to ne crew set up the r. We got all of the arrived on site at		
Benthos crew establish the Wrightsville Beach provide real-time kiner Nolan and Tariq checke Minos SVP. The SBP me computers and softwa 10:20. We did not have	ned survey control by c draw bridge. A networ matic corrections to su ed benchmark S 233 be onitor was not displayi res fired up and talking e real time SV at the he	Control hecking benchmark S 23 rk of continually operation rvey units via the intern Hydro efore the start of the sur ng, so Tariq went out an g with the sensors. The c ead, however we took ca	3 which is located on t ng base stations (NC CC et. vey day. At the dock th d bought a DVI adapte rew got underway and ists promptly and strate	he south east side of DRS) was used to ne crew set up the r. We got all of the arrived on site at egically throughout the		
Benthos crew establish the Wrightsville Beach provide real-time kiner Nolan and Tariq checke Minos SVP. The SBP me computers and softwa 10:20. We did not have day. We conducted no	ned survey control by c draw bridge. A networ matic corrections to su ed benchmark S 233 be onitor was not displayi res fired up and talking e real time SV at the he rmal survey until 18:34	Control hecking benchmark S 23 rk of continually operation rvey units via the intern Hydro efore the start of the sur ng, so Tariq went out an g with the sensors. The c ead, however we took ca 4. We conducted a roll lin	3 which is located on t ng base stations (NC CC et. vey day. At the dock th d bought a DVI adapte rew got underway and ists promptly and stration ne and a final cast. The	he south east side of DRS) was used to ne crew set up the r. We got all of the arrived on site at egically throughout the crew arrived at		
Benthos crew establish the Wrightsville Beach provide real-time kiner Nolan and Tariq check Minos SVP. The SBP mo computers and softwa 10:20. We did not have day. We conducted no Wrightsville Beach Mar	ned survey control by c draw bridge. A networ matic corrections to su ed benchmark S 233 be onitor was not displayi res fired up and talking e real time SV at the he rmal survey until 18:34 rina at 19:06. A total o	Control hecking benchmark S 23 rk of continually operation rvey units via the intern Hydro efore the start of the sur ng, so Tariq went out an g with the sensors. The c ead, however we took ca 4. We conducted a roll lin f 5 SV casts were taken t	3 which is located on t ng base stations (NC CC et. vey day. At the dock th d bought a DVI adapte rew got underway and ists promptly and strat ne and a final cast. The hroughout the day. A t	he south east side of DRS) was used to ne crew set up the r. We got all of the arrived on site at egically throughout the crew arrived at cotal of 6 main scheme		
Benthos crew establish the Wrightsville Beach provide real-time kiner Nolan and Tariq check Minos SVP. The SBP me computers and softwa 10:20. We did not have day. We conducted no Wrightsville Beach Mai survey lines were acqu	ned survey control by c draw bridge. A networ matic corrections to su ed benchmark S 233 be onitor was not displayi res fired up and talking e real time SV at the he rmal survey until 18:34 rina at 19:06. A total o ired with all sensors.	Control hecking benchmark S 23 rk of continually operation rvey units via the intern Hydro efore the start of the sur ng, so Tariq went out an g with the sensors. The c ead, however we took ca 4. We conducted a roll lin f 5 SV casts were taken t	3 which is located on t ng base stations (NC CC et. vey day. At the dock th d bought a DVI adapte rew got underway and ists promptly and strat ne and a final cast. The hroughout the day. A t	he south east side of DRS) was used to he crew set up the r. We got all of the arrived on site at egically throughout the crew arrived at sotal of 6 main scheme		
Benthos crew establish the Wrightsville Beach provide real-time kiner Nolan and Tariq checke Minos SVP. The SBP me computers and softwa 10:20. We did not have day. We conducted no Wrightsville Beach Mar survey lines were acqu	ned survey control by c draw bridge. A networ matic corrections to su ed benchmark S 233 be onitor was not displayi res fired up and talking e real time SV at the he rmal survey until 18:34 rina at 19:06. A total o ired with all sensors.	Control hecking benchmark S 23 rk of continually operation rvey units via the intern Hydro efore the start of the sur ng, so Tariq went out an g with the sensors. The c ead, however we took ca 4. We conducted a roll lin f 5 SV casts were taken t	3 which is located on t ng base stations (NC CC et. vey day. At the dock th d bought a DVI adapte rew got underway and ists promptly and strate ne and a final cast. The hroughout the day. A t	he south east side of DRS) was used to ne crew set up the r. We got all of the arrived on site at egically throughout the crew arrived at cotal of 6 main scheme		
Benthos crew establish the Wrightsville Beach provide real-time kiner Nolan and Tariq checke Minos SVP. The SBP me computers and softwa 10:20. We did not have day. We conducted no Wrightsville Beach Mar survey lines were acqu	ned survey control by c draw bridge. A networ matic corrections to su ed benchmark S 233 be onitor was not displayi res fired up and talking e real time SV at the he rmal survey until 18:34 rina at 19:06. A total o ired with all sensors.	Control hecking benchmark S 23 rk of continually operation Hydro efore the start of the sur ng, so Tariq went out an g with the sensors. The c ead, however we took ca 4. We conducted a roll lin f 5 SV casts were taken t	3 which is located on t ng base stations (NC CC et. vey day. At the dock th d bought a DVI adapte rew got underway and ists promptly and strate ne and a final cast. The hroughout the day. A t	he south east side of DRS) was used to ne crew set up the r. We got all of the arrived on site at egically throughout the crew arrived at sotal of 6 main scheme		
Benthos crew establish the Wrightsville Beach provide real-time kiner Nolan and Tariq checke Minos SVP. The SBP me computers and softwa 10:20. We did not have day. We conducted no Wrightsville Beach Mai survey lines were acqu	ned survey control by c draw bridge. A networ matic corrections to su ed benchmark S 233 be onitor was not displayi res fired up and talking e real time SV at the he rmal survey until 18:34 rina at 19:06. A total o ired with all sensors.	Control hecking benchmark S 23 rk of continually operatin rvey units via the intern Hydro efore the start of the sur ng, so Tariq went out an g with the sensors. The c ead, however we took ca 4. We conducted a roll lin f 5 SV casts were taken t	3 which is located on t ng base stations (NC CC et. vey day. At the dock th d bought a DVI adapte rew got underway and ists promptly and strat ne and a final cast. The hroughout the day. A t	he south east side of DRS) was used to ne crew set up the r. We got all of the arrived on site at egically throughout the crew arrived at cotal of 6 main scheme		

Daily Survey Field Notes Date: 3/13/2022 72 Day of Year: Time SOS (local): 6:38 Time EOS (local): 19:13 Project: Wrightsville Beach Cultural Resources Survey Survey Location: 1-3 miles offshore of Masonboro Inlet Hydro Crew: Nolan Day Clay Walker Tariq Moya **Atmospheric Conditions** Water Conditions Sky: Clear Swell: 2-3 ft Wind Speed: 10-15 KT Chop: 2-3 ft Temp: 40-50 F Wind Direction: NW Temp: 50-60 F **Survey Activities** Control Checked benchmark S 233 Hydro The crew started the morning off by going over systems, order of operations and safety procedures on the vessel. Also, we spent time troubleshooting the SSS laptop. We got all of the sensors talking and got underway at 8:34. We arrived on site at 8:59. It took the crew about an hour to deploy all gear which included the multibeam heads, SSS, SBP, and the TVG. We added the manual layback in Qinsy for the SSS, SBP, and the TVG. Data collection commenced by 10:41. We collected until 17:12 when the SSS stopped pinging. We retreived the SSS to find the data cable had ripped out of the housing on the towfish. We then conducted a roll line, took a final cast, retreived all gear and started the transit back to the dock. At the dock we attempted to wet splice the data cable with no success. The crew and the office made a plan to take the SSS back to Morehead City the following day for proper repairs. A total of 5 SV casts were taken throughout the day. A total of 9 main scheme survey lines were acquired

with all sensors.

geodynamics AN NV5 COMPANY

geodynamics 0

		Daily Survey Field Note	25				
Date:	3/14/2022	Day of Year:	73				
Time SOS (local):	14:42	Time EOS (local):	19:59				
Project:	Project: Wrightsville Beach Cultural Resources Survey						
Survey Location:	1-3 miles offshore of N	Vasonboro Inlet					
Hydro Crew:	Nolan Day	Tariq Moya	Clay Walker				
Atmospheric	Conditions		Water C	onditions			
Sky:	Clear		Swe	ll: 1-2 ft			
Wind Speed:	5-10 KT		Cho	p: 0.5 - 1.0 ft			
Wind Direction:	S		Tem	p: 40-50 F			
Temp:	50-60 F						
		Survey Activities					
Control							
N/A		Control					
N/A		Control					
N/A		Control					
N/A		Hydro					
N/A The SSS was successful	lly repaired at the Geod	Hydro dynamics shop in Moreh	nead City. The crew me	t back at Wrightsville			
N/A The SSS was successful Beach Marina and got	lly repaired at the Geod the SSS reinstalled and	Hydro dynamics shop in Moreh d talking with the topside	head City. The crew me e. The crew got underw	t back at Wrightsville vay and arrived on site			
N/A The SSS was successful Beach Marina and got at 15:27. The crew dep	lly repaired at the Geod the SSS reinstalled and ployed all gear. Data co	Hydro Hydro dynamics shop in Moreh d talking with the topside illection commenced by	ead City. The crew me e. The crew got underw 16:01. We stopped col	t back at Wrightsville vay and arrived on site lecting data at 19:07.			
N/A The SSS was successful Beach Marina and got at 15:27. The crew dep We conducted a roll lir	lly repaired at the Geo the SSS reinstalled and bloyed all gear. Data co ne and a final cast. The	Hydro dynamics shop in Moreh talking with the topside illection commenced by crew arrived at the doc	ead City. The crew me e. The crew got underw 16:01. We stopped col k at 19:37. A total of 3	t back at Wrightsville vay and arrived on site lecting data at 19:07. SV casts were taken			
N/A The SSS was successful Beach Marina and got at 15:27. The crew dep We conducted a roll lir throughout the day. A	lly repaired at the Geo the SSS reinstalled and bloyed all gear. Data co ne and a final cast. The total of 4 main scheme	Hydro dynamics shop in Moreh talking with the topside flection commenced by crew arrived at the doc e survey lines were acqu	iead City. The crew me e. The crew got underw 16:01. We stopped col k at 19:37. A total of 3 ired with all sensors.	t back at Wrightsville vay and arrived on site lecting data at 19:07. SV casts were taken			
N/A The SSS was successful Beach Marina and got at 15:27. The crew dep We conducted a roll lir throughout the day. A	lly repaired at the Geod the SSS reinstalled and ployed all gear. Data co ne and a final cast. The total of 4 main scheme	Hydro dynamics shop in Moreh d talking with the topside illection commenced by crew arrived at the doc e survey lines were acqu	ead City. The crew me e. The crew got underw 16:01. We stopped col k at 19:37. A total of 3 ired with all sensors.	t back at Wrightsville vay and arrived on site lecting data at 19:07. SV casts were taken			
N/A The SSS was successful Beach Marina and got at 15:27. The crew dep We conducted a roll lir throughout the day. A	lly repaired at the Geod the SSS reinstalled and ployed all gear. Data co ne and a final cast. The total of 4 main scheme	Hydro dynamics shop in Moreh d talking with the topside illection commenced by crew arrived at the doc e survey lines were acqu	ead City. The crew me e. The crew got underw 16:01. We stopped col k at 19:37. A total of 3 ired with all sensors.	t back at Wrightsville vay and arrived on site lecting data at 19:07. SV casts were taken			
N/A The SSS was successful Beach Marina and got at 15:27. The crew dep We conducted a roll lir throughout the day. A	lly repaired at the Geod the SSS reinstalled and ployed all gear. Data co ne and a final cast. The total of 4 main scheme	Hydro dynamics shop in Moreh d talking with the topside illection commenced by crew arrived at the doc e survey lines were acqu	head City. The crew me e. The crew got underw 16:01. We stopped col k at 19:37. A total of 3 ired with all sensors.	t back at Wrightsville vay and arrived on site lecting data at 19:07. SV casts were taken			
N/A The SSS was successful Beach Marina and got at 15:27. The crew dep We conducted a roll lir throughout the day. A	lly repaired at the Geod the SSS reinstalled and bloyed all gear. Data co ne and a final cast. The total of 4 main scheme	Hydro dynamics shop in Moreh d talking with the topside illection commenced by crew arrived at the doc e survey lines were acqu	ead City. The crew me e. The crew got underw 16:01. We stopped col k at 19:37. A total of 3 ired with all sensors.	t back at Wrightsville vay and arrived on site lecting data at 19:07. SV casts were taken			

geodynamics 0

		Daily Survey Field Note	es				
Date: 3/15/2	.022	Day of Year:	74				
Time SOS (local): 7:23		Time EOS (local):	18:41				
Project: Wright	Project: Wrightsville Beach Cultural Resources Survey						
Survey Location: 1-3 mil	les offshore of N	/lasonboro Inlet					
Hydro Crew: Nolan	Day	Tariq Moya	Clay Walker				
Atmospheric Condit	tions		Water Co	onditions			
Sky: Cloudy			Swel	ll: 1-2 ft			
Wind Speed: 0-5 KT			Choj	p: 0 - 0.5 ft			
Wind Direction: SE			Tem	p: 40-50 F			
Temp: 50-60 F	F						
		Comment Antibility					
		Survey Activities					
Checked benchmark S 233		Control					
		Hydro		~			
The crew conducted normal se	urvey operation	is until 16:55. We retrei	ved the SSS, SBP, and t	he TVG. We left the			
multibeam heads in the water	r to conduct cali	bration test just north o	of the survey site on AR	370 to verify our			
angular offsets. We conducted	d roll, pitch, and	l yaw lines. The crew arı	rived at the dock at 18:	25. A total of 6 SV casts			
were taken throughout the da	ay. A total of 12	main scheme survey lin	es were acquired with	all sensors. A total of 6			
verification test lines were acc	quired with MBI	ES only.					

geodynamics 0

		Daily Survey Field Note	25			
Date: 3	/16/2022	Day of Year:	75			
Time SOS (local): 7	:15	Time EOS (local):	15:01			
Project: Wrightsville Beach Cultural Resources Survey						
Survey Location: 1	-3 miles outside of M	lasonboro Inlet				
Hydro Crew: N	lolan Day	Tariq Moya	Clay Walker			
Atmospheric C	Conditions		Water Co	onditions		
Sky: C	Cloudy		Swel	II: 3-4 ft		
Wind Speed: 1	.0-15 KT		Choj	o: 1-2 ft		
Wind Direction:	IE		Tem	o: 40-50 F		
Temp: 5	0-60 F					
3		Comment Antibility				
		Survey Activities				
Charles I have been a C 20	22	Control				
Checked benchmark S 2:	33					
		Hydro				
Normal survey day until	the conditions becan	ne unfavorable. We call	ed the day for weather	around 12:45 and		
arrived at the dock at 13	3:45. A total of 3 SV ca	asts were taken through	nout the day. A total of	5 main scheme survey		
lines were acquired with	n all sensors.					

geodynamics

	Daily Survey Field Notes						
Date:	3/17/2022	Day of Year:	76				
Time SOS (local):	12:24	Time EOS (local):	17:01				
Project:	Wrightsville Beach Cu	Itural Resources Survey					
Survey Location:	1-3 miles offshore of I	Masonboro Inlet					
Hydro Crew:	Nolan Day	Tariq Moya	Clay Walker				
Atmospheric	c Conditions		Water C	onditions			
Sky:	Cloudy		Swe	ll: 3-4 ft			
Wind Speed:	15-20 KT		Cho	p: 2-3 ft			
Wind Direction:	SE		Tem	p: 40-50 F			
Temp:	50-60 F						
		Survey Activities					
Control							
Charles Donahmanle C	111		Checked Benchmark S 233				
Checked Benchmark S	233						
Checked Benchmark S	233						
Checked Benchmark S	233	Hydro					
Checked Benchmark S	233 noderately rough durin	Hydro g the transit through Ma	asonboro Inlet with 3-4	ft swells and 15-20mph			
Checked Benchmark S The conditions were m winds. We arrived on s	233 noderately rough durin site and deployed the g	Hydro g the transit through Ma gear. We acquired 1 line	asonboro Inlet with 3-4 and then determined t	ft swells and 15-20mph he conditions too rough			
Checked Benchmark S The conditions were m winds. We arrived on s to survey. A total of 1 of	233 noderately rough durin site and deployed the g cast was taken. The cre	Hydro g the transit through Ma gear. We acquired 1 line ew arrived at the dock at	asonboro Inlet with 3-4 and then determined t : 15:28.	ft swells and 15-20mph he conditions too rough			
Checked Benchmark S The conditions were m winds. We arrived on s to survey. A total of 1	233 noderately rough durin site and deployed the g cast was taken. The cre	Hydro g the transit through Ma gear. We acquired 1 line ew arrived at the dock at	asonboro Inlet with 3-4 and then determined t : 15:28.	ft swells and 15-20mph he conditions too rough			
Checked Benchmark S The conditions were m winds. We arrived on s to survey. A total of 1 o	233 noderately rough durin site and deployed the g cast was taken. The cre	Hydro g the transit through Ma gear. We acquired 1 line ew arrived at the dock at	asonboro Inlet with 3-4 and then determined t : 15:28.	ft swells and 15-20mph he conditions too rough			
Checked Benchmark S The conditions were m winds. We arrived on s to survey. A total of 1 o	233 noderately rough durin site and deployed the g cast was taken. The cre	Hydro g the transit through Ma gear. We acquired 1 line ew arrived at the dock at	asonboro Inlet with 3-4 and then determined t : 15:28.	ft swells and 15-20mph he conditions too rough			
Checked Benchmark S The conditions were m winds. We arrived on s to survey. A total of 1 o	233 noderately rough durin site and deployed the g cast was taken. The cre	Hydro g the transit through Ma gear. We acquired 1 line ew arrived at the dock at	asonboro Inlet with 3-4 and then determined t 15:28.	ft swells and 15-20mph he conditions too rough			
Checked Benchmark S The conditions were m winds. We arrived on s to survey. A total of 1 o	233 noderately rough durin site and deployed the g cast was taken. The cre	Hydro g the transit through Ma gear. We acquired 1 line ew arrived at the dock at	asonboro Inlet with 3-4 and then determined t : 15:28.	ft swells and 15-20mph he conditions too rough			
Checked Benchmark S The conditions were m winds. We arrived on s to survey. A total of 1 o	233 noderately rough durin site and deployed the g cast was taken. The cre	Hydro g the transit through Ma gear. We acquired 1 line ew arrived at the dock at	asonboro Inlet with 3-4 and then determined t : 15:28.	ft swells and 15-20mph he conditions too rough			

geodynamics 0

	Daily Survey Field Note	25	
Date: 3/18/2022	Day of Year:	77	
Time SOS (local): 6:35	Time EOS (local):	19:17	
Project: Wrightsville Beach C	Cultural Resources Survey		
Survey Location: 1-3 miles offshore o	f Masonboro Inlet	N	
Hydro Crew: Nolan Day	Tariq Moya		
Atmospheric Conditions	_	Water Co	onditions
Sky: Cloudy		Swel	ll: 2-3 ft
Wind Speed: 5-10 KT		Choj	p: 0.5 - 1.0 ft
Wind Direction: SW		Tem	p: 40-50 F
Temp : 50-60 F			
	Survey Activities		
Checked Benchmark S 233	control		
	Hydro		
Normal survey day. We attatched a swivelir	ng shackle to the Minos S	VP cage to keep the line	e from twisting on each
cast. The magnetometer stopped showing a	altitude so we retreived it	and placed the altimet	er in the correct
position. We learned dropping the mag off	of the stern as easy as po	ssible prevented the ru	sh of water from
displacing the altimeter in its housing. We a	also changed the SVP dep	th reading in SeaCast fr	om 1.0 to 0.5. A total of
7 SV casts were taken throughout the day.	A total of 10 main scheme	e survey lines were acqu	uired with all sensors.

geodynamics 0

Daily Survey Field Notes				
Date:	3/20/2022	Day of Year:	79	
Time SOS (local):	7:12	Time EOS (local):	12:58	
Project:	Wrightsville Beach Cu	Itural Resources Survey		
Survey Location:	1-3 miles offshore of	Masonboro Inlet		
Hydro Crew:	Nolan Day	Tariq Moya		
Atmospheric	Conditions		Water Co	onditions
Sky:	Clear		Swel	l: 2-3 ft
Wind Speed:	15-20 KT		Choj	o: 1-2 ft
Wind Direction:	NE		Tem	3: 40-50 F
Temp:	50-60 F			
		Survey Activities		
Chacked Bonchmark S	222	Control		
checked benchmark 3	235			
		Hydro		
Our 4th man had a per	sonal issue and could	not show up for the day.	. We waited until 7:50 a	and then got underway.
We arrived on site at 8	:20. The conditions we	ere moderately rough wi	th 2-3ft swells and 15-2	20mph winds. We only
deployed the multibea	m heads and ran a mo	ock survey line to gauge t	the conditions. We dete	ermined it too rough
and unsafe to deploy t	he rest of the gear. We	e conducted 3rd party M	IBES data just off of the	Wrightsville Beach and
in ICW. The crew retur	ned the dock at 16:52.			

geodynamics 0

Daily Survey Field Notes				
Date:	3/21/2022	Day of Year:	80	
Time SOS (local):	7:10	Time EOS (local):	19:22	
Project:	Wrightsville Beach Cu	Itural Resources Survey		
Survey Location:	1-3 miles outside of N	1asonboro Inlet		
Hydro Crew:	Nolan Day	Tariq Moya	Clay Walker	
Atmospheric	Conditions		Water Co	onditions
Sky:	Cloudy		Swel	ll: 2-3 ft
Wind Speed:	5-10 KT		Choj	p: 1-2 ft
Wind Direction:	NW		Tem	p: 40-50 F
Temp:	50-60 F			
		Survey Activities		
		Control		
Checked benchmark S	233			
		Hydro		
Normal survey day uni	il 18:31 when we notic	ced the SBP winch line h	ad broken from the sha	ckle. We were able to
manually pull the SBP	back to the gunnel whe	ere we reattacthed the v	winch line. We got the S	SBP safely back on deck.
The crew arrived back	at the dock at 19:12. A	total of 5 SV casts were	e taken throughout the	day. A total of 11 main
scheme survey lines w	ere acquired with all se	ensors.		

geodynamics 0

Daily Survey Field Notes				
Date: 3/	/22/2022	Day of Year:	81]
Time SOS (local): 7:	07	Time EOS (local):	19:16]
Project: W	rightsville Beach Cul	tural Resources Survey		
Survey Location: 1-	3 miles outside of M	asonboro Inlet		
Hydro Crew: No	olan Day	Tariq Moya	Clay Walker	
Atmospheric Co	onditions		Water G	Conditions
Sky: Cl	oudy		Swe	ell: 0 - 0.5 ft
Wind Speed: 5-	10 KT		Cho	op: 0 - 0.5 ft
Wind Direction: SE			Tem	np: 40-50 F
Temp: 50)-60 F			
		Comune Antivities		
		Survey Activities		
Chacked banchmark \$ 22	2	Control		
Checked benchmark 5 25	5			
		Hydro		
Before the transit too the	e survey site, the crev	w double checked the S	BP connections and sh	ackles. Normal survey
day. The crew arrived bac	ck at the dock 19:13.	A total of 5 SV casts we	ere taken throughout t	he day. A total of 12
main scheme survey lines	s were acquired with	all sensors.		

geodynamics 0

Daily Survey Field Notes				
Date:	3/23/2022	Day of Year:	82	
Time SOS (local):	7:18	Time EOS (local):	12:27	
Project:	Wrightsville Beach Cul	tural Resources Survey		
Survey Location:	1-3 miles outside of M	lasonboro Inlet		
Hydro Crew:	Nolan Day	Tariq Moya	Clay Walker	
Atmospheric	Conditions		Water Co	onditions
Sky:	Light Rain		Swe	II: 3-4 ft
Wind Speed:	15-20 KT		Cho	p: 2-3 ft
Wind Direction:	SE		Tem	p: 40-50 F
Temp:	50-60 F			
		Survey Activities		
	222ith annoistantly a	Control		
Checked benchmark S.	233 with consistently g	good results.		
		Hydro		
The day started off wit	h rough conditions wit	h 3-4ft swells and 15-20) mph winds. We deplo	yed all of the gear and
attempted a line. We w	vere seeing consistent	blowouts in the multibe	eam data. The crew det	ermined the conditions
were too rough for qua	ality data acquisition by	y 15:00. We safely retrei	ived the SSS, SBP, and r	multibeam heads. We
towed the magnetome	ter into the inlet for a	safe retreival. A total of	2 SV casts were taken	throughout the day. A
total of 1 main scheme	survey line was acquir	red with all senors.		

Daily Survey Field Notes				
Date:	3/27/2022	Day of Year:	86]
Time SOS (local):	6:13	Time EOS (local):	16:55]
Project:	Wrightsville Beach Cu	Itural Resources Survey		
Survey Location:	1-3 miles outside of N	1asonboro Inlet		
Hydro Crew:	Nolan Day	Tariq Moya	Clay Walker	
Atmospherie	c Conditions		Water C	Conditions
Sky:	Clear		Swe	ell: 2-3 ft
Wind Speed:	15-20 KT		Cho	pp: 2-3 ft
Wind Direction:	SW		Tem	1p: 40-50 F
Temp:	50-60 F			
		Survey Activities		
		Control		
Checked benchmark S	233			
		Hydro		
The previous day 085 v	we conducted schedule	ed services on both mot	ors. We got underway,	, and before we reached
the inlet channel, the	starboard motor shut o	lown. We returned to th	ne dock to troubleshoo	ot. We discovered a film
coming from the starb	oard motor and acted	quickly to get the boat I	nauled out of the wate	r for further
nvestigation. Nolan ar	nd Tariq retreived the t	railer from the airbnb a	nd backed it down the	ramp. In that time Josh
correctly re-installed if	. We absorbed the loo	se fuel in the motor wel	ll and waited for confir	mation to survey. We
were cleared to survey	and arrived to the sur	vey site at 9:06. We ran	the inshore survey lin	es due to the strong
west wind. On the line	sections in front of the	e inlet we were seeing v	what we thought was s	uspended sediment or
sea grass. With the ou	tgoing tide, the water o	column view of the muli	tbeam heads was show	ving noise. Conditions
worsened as the day w the inlet for a safe retr	reival. A total of 3 SV ca	u to make a weather cal	out the day. A total of	11 main scheme survey
lines were acquired wi	th all senors			

geodynamics

0

geodynamics

Daily Survey Field Notes				
Date:	3/28/2022	Day of Year:	87	
Time SOS (local):	6:21	Time EOS (local):	17:14	
Project:	Wrightsville Beach Cul	Itural Resources Survey		
Survey Location:	1-3 miles outside of N	lasonboro Inlet		
Hydro Crew:	Nolan Day	Tariq Moya	Clay Walker	
Atmospheric	Conditions		Water Co	onditions
Sky:	Clear		Swel	II: 3-4 ft
Wind Speed:	15-20 KT		Choj	o: 3-4 ft
Wind Direction:	SW		Tem	o: 40-50 F
Temp:	50-60 F			n
	2			
		Survey Activities		
Chacked banchmark S	122	Control		
Checked benchmark 3	233			
Hydro				
The day started off wit	h rough conditions. W	e managed to until 15:4	3 when we called the d	ay for weather. We
retreived the multibea	m heads and the SSS a	t sea and towed the SBF	and the magnetomete	er into the inlet for safe
retreival. The crew arri	ived back to the dock a	t 16:37. A total of 4 SV o	casts were taken throug	shout the day. A total of
12 main scheme surve	y lines were acquired v	vith all sensors.		

geodynamics 0

Daily Survey Field Notes				
Date:	3/29/2022	Day of Year:	88	
Time SOS (local):	6:21	Time EOS (local):	20:15	
Project:	Wrightsville Beach Cu	Itural Resources Survey		
Survey Location:	1-3 miles outside of N	lasonboro Inlet		
Hydro Crew:	Nolan Day	Tariq Moya	Clay Walker	
Atmospherie	c Conditions		Water Co	onditions
Sky:	Cloudy		Swel	ll: 1-2 ft
Wind Speed:	5-10 KT		Choj	p: 0.5 - 1.0 ft
Wind Direction:	NE		Tem	p: 40-50 F
Temp:	50-60 F			
		Survey Activities		
		Control		
Checked benchmark S	233			
		Hydro		
The crew got started e	arly and poked out int	o the sea to gauge the c	onditions. We determir	ned it too rough to
survey and we made t	he transit back to the c	lock to be on weather st	andby until around noo	on when conditions laid
down. We arrived bac	k on site at 12:27 but u	pon arrival, the generat	or shut down. We did s	ome troubleshooting
with no success. We th	nen made the transit b	ack to the dock to furthe	er troubleshoot. We ide	entified the issue as a
faulty emergency shut	-off wire. The generate	or issue was resolved by	14:27 and the crew hea	aded back out and
arrived on site at 14:4	6. We surveyed until 19	9:48 and arrived at the d	lock at 20:12. A total of	3 SV casts were taken
throughout the day. A	total of 7 main scheme	e survey lines were acqu	ired with all sensors.	

geodynamics 0

Daily Survey Field Notes				
Date: 4/3/2022	Day of Year:	93		
Time SOS (local): 6:19] Time EOS (local):	19:41		
Project: Wrightsville Beach Cu	ultural Resources Survey			
Survey Location: 1-3 miles outside of N	Vasonboro Inlet	N		
Hydro Crew: Nolan Day	Tariq Moya	Rachel Dudas		
Atmospheric Conditions		Water Co	onditions	
Sky: Cloudy]	Swe	ll: 1-2 ft	
Wind Speed: 5-10 KT]	Cho	p: 1-2 ft	
Wind Direction: NW]	Tem	p: 40-50 F	
Temp: 50-60 F]			
	Survey Activities			
	Survey Activities			
Checked benchmark \$ 233	control			
	Hydro			
Normal day of survey. The generator shut do	own at 15:51. Josh found	l another faulty wire, w	rapped it with electrical	
tape, and got it back up and running. We sur	rveyed until 18:44. The c	rew arrived at the dock	at 19:37. A total of 7	
SV casts were taken throughout the day. A t	otal of 14 main scheme I	ines were acquired with	n all sensors, except the	
magnetometer was not logging for 1 of thos	e 14 lines, which will be	a recovery for a differei	nt day.	

geodynamics

Daily Survey Field Notes				
Date: 4/11/	2022	Day of Year:	101	
Time SOS (local): 6:34		Time EOS (local):	16:46	
Project: Wrigh	tsville Beach Cultu	aral Resources Survey		
Survey Location: 1-3 m	iles outside of Mas	sonboro Inlet		
Hydro Crew: Nolan	Day	Tariq Moya	Rachel Dudas	
Atmospheric Cond	itions		Water C	onditions
Sky: Clear			Swe	ll: 2-3 ft
Wind Speed: 15-20	ΚT		Cho	p: 2-3 ft
Wind Direction: SW			Tem	p: 40-50 F
Temp : 50-60	F			
~				
		Survey Activities		
Chacked bonchmark § 233		Control		
		Hydro		
The crew completed main scl	heme data acquisi	tion. We acquired 1 cr	ossline before the con	ditions became
unfavorable. We towed the r	nagnetometer bac	ck into the inlet for safe	e retreival. The crew ar	rived back at the dock
at 15:51. A total of 3 SV casts	were taken throu	ighout the day.		

geodynamics 0

Daily Survey Field Notes				
Date: 4/12/2022	Day of Year:	102		
Time SOS (local): 6:39	Time EOS (local):	18:56		
Project: Wrightsville Bea	ach Cultural Resources Survey			
Survey Location: 1-3 miles outsid	le of Masonboro Inlet			
Hydro Crew: Nolan Day	Tariq Moya	Rachel Dudas		
Atmospheric Conditions		Water Co	onditions	
Sky: Clear		Swel	l: 2-3 ft	
Wind Speed: 10-15 KT		Chop	: 2-3 ft	
Wind Direction: SW		Temp	9: 40-50 F	
Temp: 50-60 F				
	Comment Antipities			
	Survey Activities			
N/A	Control			
	Hydro		1941 A. 194	
Normal survey day of crosslines and re	coveries. We managed to clos	e out the survey by 17:2	20. The crew arrived	
back at the dock at 18:26. A total of 5	SV casts were taken throughou	ut the day. A total of 8 ci	ross lines were	
acquired with all sensors. A lotal of 9 F	ecoveries were acquired.			

geodynamics 0

APPENDIX 4: OFFICIAL SCOPE OF WORK

geodynamics

AMENDMENT OF SOLICIT	TATION/MODII	FION/MODIFICATION OF CONTRACT		1.CONTRACT	ID CODE	PAGE OF PAG	
2. AMENDMENT/MODIFICA TION NO.	3. EFFECTIVE DATE 10-Feb-2022	4. REQUISITION/PURCHASE REQ. NO. W81LJ820267850		5. PROJECTNO.		1 20 NO.(Ifapplicable)	
. ISSUED BY CODE	W912PM	7. ADMINISTERED BY (Ifother than item 6)		COI	DE		
U S ARMY CORPS OF ENGINEERS, WILMINGTON WILMINGTON DISTRICT ATTN: CONTRACTING DIVISION 60 DARLINGTON AVE WILMINGTON NC 28403-1343		See Item 6			87		
NAME AND ADDRESS OF CONTRACTOR	(No., Street, County, S	state and Zip Code)		9A. AMENDM	ENT OF SOI	LICITATION NO	
GEODYNAMICS MS. SLOAN FREEMAN				9B. DATED (S	B. DATED (SEE ITEM 11)		
NEWPORT NC 28570-6544		х	10A. MOD. OF	Г/ORDER NO.			
				10B. DATED	(SEE ITEM)	13)	
DDE 3EAK9	FACILITY COE	DE APPLIES TO AMENDMENTS OF SOL		28-Jan-2022			
The above numbered solicitation is amended as set for	th in Item 14. The hour and	date specified for receipt of Offer	\square	is extended,	is not exten	ded.	
or (c) By separate letter or telegram which includes a RECEIVED A T THE PLACE DESIGNATED FOR T REJECTION OF YOUR OFFER. If by virtue of this a provided each telegramor letter makes reference to th 2. ACCOUNT ING AND APPROPRIATION D	reference to the solicitation a HE RECEIP TOF OFFERS I mendment you desire to cha e solicitation and this amend ATA (If required)	and amendment numbers. FAILURE OF YOUR PRIOR TO THE HOUR AND DATE SPECIFIE nge an offer already submitted, such change may ment, and is received prior to the opening hour	ACKI D MA be ma and da	JOW LED GMENT Y RESULTIN de by telegramor le ate specified.	TO BE tter,		
13. THISI'	TEM APPLIES ONLY	TO MODIFICATIONS OF CONTRAC	Г S/O	RDERS.			
IT MO	DIFIES THE CONTRA	CT/ORDER NO. AS DESCRIBED IN IT	EM	14.			
A. THIS CHANGE ORDER IS ISSUED PURS CONTRACT ORDER NO. IN ITEM 10A	UANT TO: (Specify a	uthority) THE CHANGES SET FORTH	INI	TEM 14 ARE N	IADE IN TH	ΙĒ	
 B. THE ABOVE NUMBERED CONTRACT/ office, appropriation date, etc.) SET FOR C. THIS SUPPLEMENT AL AGREEMENT I 	ORDER IS MODIFIED TH IN ITEM 14, PUR SENTERED INTO PU	TO REFLECT THE ADMINISTRATI SUANT TO THE AUTHORITY OF FA RSUANT TO AUTHORITY OF:	VE C .R 43	HANGES (such .103(B).	as changes in	ı paying	
D. OTHER (Specify type of modification and	l authorit y)						
IFAR 52.243-1 Alt III, ChangesFixed Price	x is required to sig	n this document and return 1	COL	uies to the issuin	o office		
	IS required to sig	by LICE spatian handings including soli	oitati	an /contract subj	act matter		
where feasible.) Modification Control Number: K7ct9ae92 A. To incorporate the aw arded Scope of Wo B. All other terms and conditions remain unc C. As consideration to the modification agree delivery order from further equitable adjustm	22654 ork dated December 20 hanged. ed to herein, the contra lents attributable to suc	21. This is a no cost modification. Inctor hereby releases the government ch facts and circumstances giving rise	from e to t	nany and all liab he aforesaid mo	ility under th odification.	is	
xcept as provided herein, all terms and conditions of the 5A. NAME AND TITLE OF SIGNER (Type o	document referenced in Items r print)	9A or 10A, as hereto fore changed, remains unche 16A. NAME AND TITLE OF CO	nged)NTI	and in full force and RACTING OFFI	effect. CER (Type o	or print)	
	15C DATE SOL	TEL:	DIC	EMAL:	1.0		
JB. CONTRACTOR OFFEROR	15C. DATE SIGNEI	BY	NIC/	1	160	. DATE SIGNEI	
(Signature of person authorized to sign)	-	(Signature of Contracting O	fficer)			
XCEPTION TO SF 30 APPROVED BY OIRM 11-84	1	30-105-04		ST / Pre FAI	ANDARD FC scribed by GS R (48 CFR) 5	0RM 30 (Rev. 10 3A 3.243	

geo*dynamics* AN NV5 COMPANY

W912PM21D0001 W912PM22F0008 (k7ct9ae922654) Page 2 of 20

DATE 28-JAN-2022

SECTION SF 30 BLOCK 14 CONTINUATION PAGE

SUMMARY OF CHANGES

SECTION 00 01 10 - TABLE OF CONTENTS

The below Table of Contents has been added

Exhibit/Attachment Table of Contents

DOCUMENT TYPE	DESCRIPTION	PAGES	
Attachment 1	Map and Attachment		

SECTION 00 73 00 - SUPPLEMENTARY CONDITIONS

The following have been added by full text: <u>SCOPE OF WORK</u>

SCOPE OF WORK

HYDROGRAPHIC AND CULTURAL RESOURCE SURVEYS OF POTENTIAL SAND BORROW AREAS

WRIGHTSVILLE BEACH, NORTH CAROLINA

DECEMBER 2021

- <u>Background</u>. The U.S. Army Corps of Engineers Wilmington District (Corps) is exploring potential offshore sand borrow areas associated with the proposed Wrightsville Beach Coastal Storm Risk Management project (Figure 1). The purpose of this work is to assess hydrography and the presence and/or absence of both hard bottom and cultural resources within potential offshore sand borrow areas using appropriate survey methodologies. Data obtained through this task order will support refinement of the proposed Wrightsville Beach Coastal Storm Risk Management project's beach fill design and volume estimates as well as support geotechnical investigations in areas subjected to hydrographic and cultural resources surveys. This task order will also support identification of potential hard bottom and essential fish habitat (EFH) and the consultation process associated with Section 106 of the National Historic Preservation Act (NHPA) regarding submerged cultural resources.
- 2. <u>Project Site Description</u>. The survey area is located in the Atlantic Ocean, approximately four miles southeast of Wrightsville Beach, North Carolina (Figure 1; approximately 4.4 square miles).
- 3. <u>Survey Control</u>. All horizontal and vertical control used for surveys conducted under this task order shall be from the National Survey Reference System and be of a third order accuracy or better. All control loops must be tied to at least two or more control points. The Contractor shall submit appropriate records of all points used in U-SMART (U.S. Army Corps of Engineers Survey Monument Archival and Retrieval Tool). All work shall be relative to NAD 1983 (2011) North Carolina State Plane U.S. Survey Feet in the horizontal plane and NAVD 1988 (Geoid 12B) in the vertical plane.

2e0*dvndmics* an NV5 company

W912PM21D0001 W912PM22F0008 (k7ct9ae922654) Page 3 of 20

4. <u>Description of Supplies/Services – Hydrographic Survey</u>. The Contractor shall acquire multibeam hydrographic survey data within the area designated as Figure 1 for the purposes of capturing existing conditions and mapping the sea floor elevations on a 400-foot grid.

4.1. Hydrographic Survey Phases

4.1.1. <u>Phase 1 – Multibeam Survey</u>. The Contractor shall acquire multibeam survey data within areas off Wrightsville Beach, NC for the purposes of capturing existing conditions and mapping the sea floor elevations. Coverage shall be 100% to comply with <u>15A NCAC 07H</u>.0312 Paragraph 2(c). The multibeam survey data collection shall be contained within the identified survey area limits for the purposes of identifying and mapping hydrography (Figure 1). Prior to commencement of survey work, the Contractor shall provide the Corps with the proposed survey plan for approval. The Contractor shall be experienced in the post processing and interpretation of multibeam survey data and shall provide shape files of hydrography (including areas identified as potential hard bottom resources or other resources of interest based on the Contractor's experience working in the region).

To the extent practicable, hydrographic multibeam surveys shall be combined with cultural resources survey field work described in Section 5.1.2 of this scope of work.

- 4.1.2. <u>Phase II Draft/Final Written Report</u>. An Executive Summary reporting the results of fieldwork and preliminary analyses should be completed within 14 days of the completion of fieldwork. A full written report summarizing all data collection activities shall be submitted as a Portable Document File (PDF) electronically and in bound hardcopy to the COR. The COR shall have the opportunity to review a draft version of the survey before it is considered final. The survey report shall include, but is not limited to, the following items:
 - Written description of workflow to complete the task order (start to finish) including a flowchart diagram and a detailed description of QA/QC process
 - Dates and times of each data collection activity
 - Atmospheric Conditions for each day of data collection activity
 - All Horizontal and Vertical Control used, including monument name, establishing agency, date established, description, and published horizontal and vertical values
 - Temporary Bench Mark (TBM) descriptions with vertical values
 - Copy of all field notes
 - Complete and detailed list of all survey equipment used, including a copy of the last factory calibration report
 - Photographs of the site and any significant features or data collection techniques used.
 - Representative screen captures of the select ground truthed locations, correlated with specific multibeam signature returns.
 - Rationale for identification and mapping of select hard bottom resources or other resources of interest based on the Contractor's experience working in the region; features shall be provided based on a combination of videography ground truth data and multibeam survey data interpretive expertise
 - Qualitative characterization of the general biological communities associated with any hard ground or other benthic resources identified.
- 5. <u>Description of Supplies/Services Cultural Resources Survey</u>. This description of supplies/services reflects the provisions of Section 106 of the National Historic Preservation Act of 1966 (36 CFR 800, *Protection of Historic Properties*) and the Abandoned Shipwreck Act of 1987 (*Abandoned Shipwreck Act Guidelines*, National Park Service, *Federal Register*, Vol. 55, No. 3, December 4, 1990, pages 50116-50145). The Contractor shall conduct gradiometer, side-scan sonar, and sub-bottom profile surveys within the area shown in Figure 1 and in accordance with the

geo*dynamics* AN NV5 COMPANY

W912PM21D0001 W912PM22F0008 (k7ct9ae922654) Page 4 of 20

current standards of the NC Office of State Archaeology (NCOSA) and their Underwater Archaeology Branch (UAB) (<u>https://files.nc.gov/dncr-</u>

<u>arch/OSA</u> <u>Guidelines</u> <u>Dec2017.pdf;https://archaeology.ncdcr.gov/media/2/download?attachment</u>). The purpose of this work is to discover magnetic and/or sonar anomalies that might represent cultural resources or other objects that would impact the viability determination of the borrow areas for use in the coastal storm risk management project and make recommendations regarding their eligibility status in terms of the National Historic Preservation Act. The Contractor shall be a professional underwater archaeologist with demonstrated experience in interpreting maritime cultural resources data in North Carolina.

General consultation under the proposed survey has already been initiated (Attachment 1). The Contractor shall reference the NCOSA/NCSHPO project number (ER-20-1245) for all coordination with the NCOSA/NCSO regarding this task order.

5.1. Cultural Resources Survey Phases

5.1.1. Phase I - Archival / Background Research. Consists of archival research, literature review, and interviews with local informants and other knowledgeable individuals, as applicable. Archival and background research, undertaken prior to any field survey, includes a review of relevant environmental, archaeological, and historical literature, documents, and other data. Archival / Background research will allow for a review of known resources within and near the survey area (Figure 1) and will provide a regional framework against which identified resources should be evaluated for significance. Background research shall include previous archaeological and historic investigations (unpublished and published) conducted in and adjacent to the immediate project area. The historical review should provide an outline of the major historical developments in the project area, including information on historically significant individuals, institutions, or events, as well as the history of land use for the survey property in relationship to maritime transportation and commerce and/or vice versa. Emphasis shall be placed on examination of historic and cartographic data relating to the locations of historic wrecks and hydrographic change. Repositories may include, but are not limited to the following: municipality records, university and private collections, photography collections, and regional and national archives. Emphasis shall also be placed on documentation related to exploration. colonization, development, agriculture, fishing, industry, trade, transportation, commerce, warfare, and shipbuilding. Appropriate information shall be collected that may provide information about targets, anomalies, and landforms and their relationship to known shipwrecks or submerged archaeological sites.

Additional archival research will be conducted, as necessary, to identify, evaluate, and assess the significance of any potentially significant sites, targets, and anomalies. The contractor shall examine historic background data and build upon that data to further construct and refine a background history of the targets, and anomalies as they relate to the project area, i.e., place identifiable targets in appropriate historical context. These contexts can be used as the framework in which to apply the criteria for NRHP evaluations.

Archival research will address the following:

- Past field surveys in the project area and the relevance of the major findings in the area currently under study, with in-text references and full citations;
- Pertinent data regarding archaeological reports, site forms, and local repositories, as appropriate, with in-text references and full citations;
- Pertinent data regarding historic wrecks, submerged archaeological sites, and hydrographic change using data collected from the site files, historic maps and charts, and other appropriate archival sources, mapped and cited appropriately;

geo*dynamics* an NV5 company

W912PM21D0001 W912PM22F0008 (k7ct9ae922654) Page 5 of 20

- Pertinent historical data from records such as plat maps, tract books, aerial and topographic maps, atlases, tax records, photographs, local historical/archaeological societies and relevant historical documents, cited appropriately; and
- Pertinent historic aerials of the project area, with at least one appearing in the report, with in-text references/discussion and full citations.

In addition to archival research, pertinent information from informants, should be included, as relevant, and cited appropriately. If formal interviews are conducted, the contractor is required to provide transcripts of the interviews and waivers completed by the interviewee. The result of informal interviews can be cited as personal communication; this data should also appear in field notes.

The North Carolina Office of State Archaeology (NCOSA) is currently processing requests for site files remotely. The Contractor shall submit NCOSA-related requests to <u>osafilesearch@ncdcr.gov</u>. The NCOSA processes requests for archaeologists from various federal agencies, as well as for archaeological consultants/contractors who demonstrate Secretary of the Interior (SOI) qualifications. The Contractor shall submit NCOSA-related requests per requirements available online (<u>https://archaeology.ncdcr.gov/programs/data-inventory-gis/site-file-research</u>). The Contractor shall specify to the NCOSA in their request which types of data are requested.

5.1.2. Phase II - Field Work. The Contractor shall conduct an intensive cultural resources remote sensing survey within the polygon shown in Figure 1, which measures approximately 4.4 square miles. Field methods for the remote sensing survey shall be designed to collect sufficient information on features seen in gradiometer, side scan sonar, and sub-bottom profiler data to locate and evaluate their potential historical significance and/or the need for future investigations or avoidance measures. Investigations should explicitly determine the extents of any previously recorded archaeological sites and any newly identified sites, targets, or anomalies, and map the site components within the survey area. The submerged cultural resource remote sensing survey shall employ a transect interval of no greater than 30 meters. The boat speed shall not exceed five knots. The side scan sonar range shall collect data at least 100 percent overlapping (200% seafloor coverage) coverage of the project area and the sensor shall be towed above the seafloor at a height that is 10 to 20 percent of the range of the instrument. The gradiometer sensors shall be towed at a depth of no more than six (6) meters above the seafloor. The Contractor shall develop/confirm acceptability of field survey methods in consultation with the NCOSA prior to conducting field work investigations to ensure that survey methods and products will be acceptable for purposes of Section 106 consultation (Attachment 1). Contact information for the NCOSA's Underwater Archaeology Branch is available online (https://archaeology.ncdcr.gov/about/staff#uabstaff). Adherence to the methods shall be explicitly stated and illustrated both in the text and in the illustrations of the survey report.

Unless explicitly directed otherwise, the Contractor is to consider and treat all previously recorded resources as newly recorded resources except during evaluation: all previously recorded resources should be revisited, investigated, recorded, boundaries established, and content determined. Review of previous investigation data may inform methods and should be reviewed before field investigation. In evaluating the resource(s), the results of previous investigations should be described, cited, and incorporated into the evaluation of significance and eligibility of the resources for listing in the National Register of Historic Places (NRHP). Under no circumstances shall a previously recorded resource shall not be excluded from the investigation, either during fieldwork or in evaluation and report preparation, unless explicitly directed by the COR. Such directions will specifically be referenced in the report. In the event that an archaeological site, shipwreck, or potentially significant anomaly is identified, the Contractor is to investigate, record, establish the

W912PM21D0001 W912PM22F0008 (k7ct9ae922654) Page 6 of 20

horizontal extent, and, if possible, establish the vertical extent and determine cultural affiliation.

Artifacts and other materials should not be collected under this contract.

The Contractor must conduct the field survey in accordance with applicable Federal, State, and local laws and regulations, including those specific to the NCOSA. If the Contractor encounters any problems in accessing the survey area, or if the Contractor encounters any other problems in the process of implementing contract requirements, the Contractor should contact the COR immediately to resolve the issues as quickly as possible.

5.1.3. Phase III – Remote Sensing Data Analysis. The Contractor shall analyze and synthesize the archival research and survey data to evaluate any identified cultural resources. The Contractor shall maintain a complete record of all activities related to archival research and field investigations. This includes, for example, calibrations of instruments, height of sensors in the water column, layback distances, and procedures and field work techniques. Archival data will be used to assist in interpretation of the field data. Field data analysis shall take place during and immediately following fieldwork for quality assurance purposes.

Magnetic data shall be contoured. A preliminary evaluation of the data collected will be made at the end of each workday in order to identify the need to adjust the survey methods or correct the quality of data within the previously surveyed area. Following completion of the fieldwork, the Contractor shall complete the analysis of the archival and field data sets to identify, characterize, and evaluate the anomalies, targets, and features, for potential historical significance and the need for and scope of future investigation or avoidance measures.

The Contractor is required to submit all datasets to the Corps for review following the specifications below.

A single master map of all features documented by remote sensing shall be prepared and provided as shapefiles or a geodatabase. The Contractor shall prepare and update any required documentation to meet the NCSHPO / NCOSA standards for documentation, including site file forms.

In the event that a new archaeological site, shipwreck, or anomaly is identified, the Contractor is to investigate, record, establish the horizontal extent, and, if possible, establish the vertical extent and determine cultural affiliation. The Contractor will evaluate the resource for significance and eligibility for listing in the NRHP. If necessary, the Contractor will delineate an avoidance buffer for the resource(s) in coordination with the NCOSA/NCSHPO. The Contractor will coordinate with the NCOSA/NCSHPO to complete any necessary site forms and provide appropriate location and sketch maps. Newly recorded sites and other resources will require new resource numbers, assigned by the NCOSA/NCSHPO. Site and resource numbers should be assigned before completion and submittal of the draft report to the NCOSA/NCSHPO and the COR, and official resources numbers should be used to reference resources.

To the extent practicable, cultural resources surveys shall be combined with hydrographic multibeam survey field work described in Section 4.1.1 of this scope of work.

5.1.4. <u>Phase IV – Survey Report and Data Submissions</u>. An Executive Summary reporting the results of fieldwork and preliminary analyses should be completed within 14 days of the completion of fieldwork and submitted to the COR. An initial electronic draft report shall use all information compiled during the investigation to produce a graphically illustrated, scientifically acceptable report that conforms to the Secretary of Interior's *Standards and*

geodvnamics an NV5 company

W912PM21D0001 W912PM22F0008 (k7ct9ae922654) Page 7 of 20

Guidelines. Information shall be presented in textual, tabular, and graphic forms, whichever is most appropriate, effective, and advantageous to communicate necessary information. All tables shall have a number, title, appropriate explanatory notes, and a source note. Oversize drawings or plates shall normally not have an image larger than 11 inches by 14 inches with sufficient margin for binding on the left side and shall have a graphic scale and a north arrow. No logos shall be used anywhere in the report. NCOSA/NCSHPO standards shall supersede any of the above listed requirements, if applicable, such that the report can be successfully used for purposes of Section 106 consultation. This report, along with site file forms, shall be submitted to the Corps and NCOSA/NCSHPO (on the Corps' behalf) for review of general acceptability.

Report submission to the COR shall be one paper copy and one digital copy, to include site forms. Digitally-captured spatial data from the submerged cultural resources survey shall be packaged and submitted in a standard Geographic Information Systems (GIS) format, preferably an ESRI geodatabase. All electronic files submitted in the spatial database should be referenced to the appropriate State Plane projection using the North American Datum of 1983 (NAD 83). GIS data shall be submitted electronically for COR review, as well.

Report submission NCOSA/NCSHPO shall be one paper copy and one digital copy (pdf format). Additionally, a digital copy (pdf format) of the North Carolina Site Form for each site recorded shall be forwarded to the NCOSA/NCSHPO. Digital submissions to the NCOSA/NCSHPO shall be through <u>environmental.review@ncdcr.gov</u>. GIS data shall be submitted electronically for NCOSA/NCSHPO review, as well.

The Corps and NCOSA/NCSHPO reserve the right to request changes to the draft electronic version of the report and associated forms prior to receiving printed and bound forms of the draft report and forms. The reports and associated forms are to be watermarked DRAFT until the final report incorporating and addressing all comments and revisions made by the Corps and the NCOSA/NCSHPO have been accepted.

At a minimum, the draft/final report shall contain the following information, including appropriate photographs, maps, and drawings:

- Map(s)/chart(s) of the project area, with previously recorded and newly recorded cultural resources within and near the project area labelled;
- Description of the research sources utilized and the information resulting therein;
- Reproduction of at least one historic aerial of the project area with approximate survey boundaries indicated;
- Historical context with a synopsis of what types of archaeological sites and other cultural resources are likely to be found in the general vicinity of the project area;
- Full description and justification of the planned survey methods;
- Description of field team (names of authors and researchers, number of crew members, person-hours) and tools (e.g., make and model of remote sensing equipment);
- Global Positioning System (GPS) coordinates of identified anomalies, targets, clusters, or other potential cultural resources;
- Results, which should include:
- Summary of investigation methods and locations, including any changes to the methods based on field conditions.
- Maps of investigation locations, including the locations of all survey transects.
- Summary of data analysis, including methods.
- Descriptions of newly recorded or previously recorded and revisited cultural resources, including natural and cultural environment, occupational component(s), degree of disturbance, integrity, research potential, and an evaluation of the

eodvnamic an NV5 company

W912PM21D0001 W912PM22F0008 (k7ct9ae922654) Page 8 of 20

significance of the resource(s) to aid in the Government's determination of NRHP eligibility. Descriptions should include photographs, maps, and sketch maps as appropriate. For previously recorded resources, summaries of work and data from each of any previous investigations should also be presented in discussions of individual resources.

- Descriptions of newly recorded or previously recorded and revisited cultural resources, magnetic anomalies, sonar targets, and/or sub-bottom anomalies, clusters of anomalies and targets, including occupational component(s), degree of disturbance, integrity, research potential, and provide sufficient information for the Government to make a preliminary evaluation of eligibility for listing on the NRHP. Descriptions should include maps and sketch maps. For previously recorded resources, summaries of work and data from each of any previous investigations should also be presented in discussions of individual resources.
- A map(s) showing all significant targets and anomalies separate from the general maps showing all targets and anomalies. If some targets and anomalies are interpreted as related clusters, these clusters shall be specifically outlined on the map, in addition to the individual targets and anomalies. The map shall reference relevant data tables.
- A map(s) showing all features identified by remote sensing sufficient to delineate site components.
- Photographs of areas of investigation.
- Recommendations and evaluations of all resources and suggested avoidance buffers, including both newly identified and revisited;
- List of references;
- Copy of this SOW in appendix;
- Resumes or CVs of principal researcher(s) in appendix;
- Completed Survey Log form and associated maps in appendix; and
- Completed Site File forms and associated maps in appendix.

Following the review and the acceptance of the electronic format draft report and site file forms by the COR and the NCOSA/SHPO, the Contractor shall deliver two (2) bound copies and one (1) electronic copy of the report (including site file forms) to the COR and to the NCOSA/SHPO. The report will be used for consultation with the SHPO, the appropriate federally-recognized tribes, and other parties. The Corps also reserves the right to request draft data to assist in analysis of the draft report. If requested, the Contractor will provide a review copy of the data to be submitted at the completion of the project. The data includes raw geophysical and derived GIS data collected, analyzed, and processed. This delivery should include at a minimum draft versions of all data expected to be discussed or referenced in the final report.

Once the draft report has been accepted by the Corps/COR and the NCOSA/NCSHPO and a comment matrix has been returned, the Contractor shall address and/or incorporate into the revised final report, to include any comments made by the reviewing parties. The final report shall address and resolve the reviewer's comments and shall be submitted (along with a reproducible master copy of the original text, drawings, and plates) to the COR and the NCOSA/NCSHPO.

Similar to the draft report, the final report submission to the COR shall be one paper copy and one digital copy, to include site forms. Final GIS data shall be submitted electronically to the COR, as well.

Final report submission to NCOSA/NCSHPO shall be one paper copy and one digital copy (pdf format). Additionally, a digital copy (pdf format) of the final North Carolina Site Form for each site recorded shall be forwarded to the NCOSA/NCSHPO. Digital submissions to the
eodvnamics an NV5 company

W912PM21D0001 W912PM22F0008 (k7ct9ae922654) Page 9 of 20

NCOSA/NCSHPO shall be through <u>environmental.review@ncdcr.gov</u>. Final GIS data shall be submitted electronically to the NCOSA/NCSHPO, as well.

The Contractor shall deliver two (2) bound copies and one (1) electronic copy of the report (including site file forms) to the COR and to the NCOSA/SHPO (including the artifact catalog [if necessary], with Microsoft Excel or Access, and compatible GIS Shapefiles). The electronic version will be in PDF format and delivered on disc (CD or DVD). Final copies of all raw and processed data generated from the survey in formats prescribed above.

FINAL reports, artifacts, survey log, and site file forms, as well as all associated materials, shall be submitted no later than 75 days after the last day of fieldwork.

The Contractor shall provide all collected survey data following the specifications below:

- The navigation post-plot of the surveyed area including survey lines, line numbers or other designations, navigational shot points or event markers, and other relevant attributes shall be submitted by the Contractor to the Corps in an ArcGIS readable format (Microsoft Excel [.xls], Comma separated value [.csv], Text file [.txt], Database [.dbf] or Shapefile [shp]).
- The survey area location and relevant attributes shall be submitted by the Contractor to the Corps in an ArcGIS readable format (e.g., Microsoft Excel [.xls], Comma separated value [.csv], Text file [.txt], Database [.dbf] or Shapefile [.shp]).

The information used to create a table of magnetic anomalies and charting of magnetic anomalies shall be submitted by the Contractor to the Corps in an ArcGIS readable format (e.g., Microsoft Excel [.xls], Comma separated value [.csv], Text file [.txt], Database [.dbf] or Shapefile [.shp]). The following attributes should be included in the table of magnetic anomalies:

- Anomaly ID:
- Survey Area / Block;
- Survey line number;
- Gamma intensity of each identified anomaly (peak gradient amplitude);
- Duration (m);
- Characterization of the anomaly as a dipole, positive (+) or negative (-) monopole, or complex signature, based on the magnetic traces;
- Instrument height above the seafloor;
- Horizontal position, indicated as NAD 83 coordinates of the interpreted location of each unidentified anomaly in decimal degrees to 5 decimal places, based on magnetic traces and contoured data;
- Vertical position, indicated as estimated depth using half-width rule, Euler equation, or other means as described in the methods section; and
- Association with side scan sonar contacts or sub-bottom profiler features.

Additionally, the complete, processed and unprocessed gradiometer dataset shall also be submitted by the Contractor to the Corps. These data should be submitted in a tabular data format recognized by ArcGIS (e.g., Microsoft Excel [.xls], Comma separated value [.csv], Text file [.txt], Database [.dbf] or Shapefile [.shp]). At a minimum, the following items should be included within the data table(s):

- Easting/Longitude;
- Northing/Latitude:
- Time, in UTC;
- Raw Magnetic Readings for each instrument;
- Sensor Altitude; and
- Survey Line Number/Name.

geodynamics an NV5 company

W912PM21D0001 W912PM22F0008 (k7ct9ae922654) Page 10 of 20

Each of these components must occupy a single field within the table. For example, easting or longitude data must be within a single column in the data table. This would include a column for an easting amount, or longitude in decimal degrees, not a table with separate columns for degrees and another for decimal minutes.

The information used to create the table of side scan sonar contacts and charting of sonar contacts shall be submitted by the Contractor to the Corps in an ArcGIS readable format [e.g., Microsoft Excel [.xls], Comma separated value [.csv], Text file [.txt], Database [.dbf] or Shapefile [.shp]). The following attributes should be included:

- Side scan sonar contact ID;
- Survey Area / Block;
- Survey line number;
- Sensor altitude;
- Target length (m);
- Target width (m);
- Target height (m);
- Target shadow (m);
- Target description;
- Associated magnetic anomalies;
- NAD 83 coordinates of the target in decimal degrees to 5 decimal places; and
- Original source file name.

Additionally, both raw and processed eXtended Triton Format (.xtf) line files for the survey should be submitted, as well as mosaics. Side scan sonar mosaics of the survey area should be prepared as a geo-referenced Tagged Image Format (.tif) and output as 0.5 m resolution or better. The data used to create the charts illustrating the horizontal and vertical extent of sub-bottom geomorphic features shall be submitted by the Contractor to the Corps in an ArcGIS readable format. All anomalies analyzed as forming a cluster interpreted as a single, potential site shall be given a centroid location referenced to NAD 83, and shall also have an accompanying polygon readable in GIS format outlining the cluster, in addition to the individual anomaly data.

Description of Supplies/Services - Hard Bottom Ground Truthing. Additionally, the Contractor 6 shall ground truth select sites to confirm the presence or absence of hard bottom resources using a combination of videography and benthic grab sample techniques. The Contractor shall utilize a combination of remotely operated vehicle (ROV) and benthic grab sample techniques to ground truth and confirm the presence and/or absence of hard bottom within the areas previously identified in Phase 1 as potential hard bottom from the multibeam survey data interpretation. Videography with Differential Global Positioning System (DGPS) annotation shall be used at a select number of interpreted potential hard bottom sites (N=10) to confirm the presence or absence of hard bottom features associated with interpreted side scan sonar signature returns. A phase 2 survey plan shall be submitted to the Corps for approval prior to commencement of work. The plan shall discuss the rationale for selection of ground truth sites as well as transect locations within each site. Positioning shall be performed with an accuracy of ± 1 -meter, or other system of equivalent accuracy. The distribution of sites shall consider factors such as: (1) the diversity of bottom type (i.e., differences in backscatter return) and (2) diversity of interpreted relief. The videography transect lines shall traverse benthic habitat transitional points identified by multibeam survey data backscatter differences. Real time coordinates shall be clearly visible in the video to determine location along the video transect. Additionally, benthic grab samples (N=2/site; Total = 20), correlated with select transect locations, shall be obtained to assess the sediment characteristics for each site. The sediment samples will be described using visual classifications and the Unified Soil Classification

zeodynamics AN NV5 COMPANY

W912PM21D0001 W912PM22F0008 (k7ct9ae922654) Page 11 of 20

System. Adjustments to locations may be made based on information gathered in the field and with approval from the Corps.

Additional phase two ground truth sites are a separately priced optional bid item (priced by day) to be exercised by the Contracting Officer, if necessary, to adequately ground truth the diversity of multibeam signature returns in the project area. The video observations and the sediment characterization will be used to provide a rational for back-scatter differences previously identified through multibeam imagery which suggested potential hard bottom.

The correlation of ground truth data to specific multibeam signature returns shall be used to interpolate and refine bottom mapping results within the rest of the project area. All confirmed hard bottom areas from ground truth efforts, as well as interpolated sites, shall be characterized as being of low, moderate, and/or high relief. Hard bottom areas with generally less than 0.5 meters (1.64 feet) protruding above ocean bottom will be characterized as low relief. Hard bottom areas generally protruding between 0.5 to 2 meters (1.64 to 6.57 feet) will be characterized as moderate relief. Hard bottom areas generally protruding protruding more than 2 meters (6.57 feet) above the bottom will be characterized as high relief.

- <u>Clearances and/or Permits</u>. The Contractor shall acquire all clearances and/or permits necessary to obtain the required data. All discussions for access to private or public property or restricted waters or airspace, if applicable, must be included in the required weekly status report with the name(s), address(es), and telephone number(s) of any contacted person(s).
- 8. <u>Quality Control</u>. If work is found to be in error, incomplete, illegible or unsatisfactory after assignment is completed, the Contractor shall be liable for all cost in connection with correcting such errors. Corrective work may be performed by Government personnel or Contractor personnel at the discretion of the Contracting Officer. In any event, the Contractor shall be responsible for all costs incurred for correction of such errors, including salaries, automotive expenses, equipment rental, supervision, and any other costs in connection therewith. All data and deliverables shall be reviewed for the following:
 - Required coverage of the project limits
 - Capture of all required features
 - Required accuracies
 - Required horizontal and vertical datum
 - Adherence to the task order requirements
- 9. <u>AT/OPSEC</u>. Pre-screen candidates using E-Verify program. The Contractor must pre-screen candidates using the E-Verify program (https://www.e-verify.gov/) to meet the established employment eligibility requirements. The Vendor mush ensure that the Candidate has two valid forms of Government-issued identification prior to enrollment to ensure the correct information is entered into the E-Verify system. An initial list of verified/eligible Candidates must be provided to the COR no later than 3 business days after task order award date. When contracts are with individuals, if applicable, the individuals shall be required to complete a Form I-9, Employment Eligibility Verification, with the designated Government representative. This form will be provided to the Contracting Officer and shall be part of the official contract file.
- Safety. The U.S. Army Corps of Engineers Safety and Health Requirements Manual, EM 385-1-1, is available online at:

https://www.publications.usace.army.mil/Portals/76/Publications/EngineerManuals/EM_385-1-1.pdf

The Contractor shall be responsible for maintaining a safe and healthy work environment for all employees at all times. This includes reasonable provisions for proper lighting, seating, and shelter from weather, and access to accommodations for adequate rest, food, and water. The Contractor

eoavnamics an NV5 company

W912PM21D0001 W912PM22F0008 (k7ct9ae922654) Page 12 of 20

shall provide all personnel and equipment necessary for safe and effective completion of all archaeological and related services as detailed in this Description of Services. In addition, the following terms shall be met:

a. Safety and Activity Hazard Analysis Plan. In consultation with the COR, the Contractor shall determine the need for a Safety and Hazard Analysis Plan. This plan shall be required if the work environment or the work itself if found to be atypical of the work normally performed under this contract, and if that work presents hazards not normally encountered and accounted for as a routine part of task orders issued pursuant to the basic contract. When consultation determines that a Safety and Hazard Analysis Plan is required, the Contractor shall adhere to applicable sections of EM 385-1-1, "Safety and Health Requirements Manual," Appendix A, and the activity hazard analysis shall identify potential hazards that are specific to the work being conducted under this Description of Services. Requirements for the activity hazard analysis are presented in EM 385-1-1 at Section 19, *Floating Plant and Marine Activities*. All employees shall be made aware of these hazards and the appropriate preventative, remedial, and first aid measures. The Contractor's proposed Safety and Hazard Analysis Plan must include a tentative fieldwork schedule.

b. Survey Vessel. The survey vessel shall be supplied by the Contractor and shall be of sufficient size to contain all required survey and safety equipment, and provide temporary shelter to the field crew. The survey vessel shall meet all relevant U.S. Coast Guard safety criteria for the crew size, equipment, and tasks being performed. The survey vessel shall have available a litter, emergency oxygen, first aid supplies, personal floatation devices, marine VHF radio, and cellular telephone.

c. *CPR and First Aid.* All field crew personnel shall have current and valid certification in CPR and First Aid.

11. <u>Required Deliverables</u>. The Contractor shall be required to deliver post-processed XYZ multibeam bathymetric data, shapefiles, a survey plan, metadata records, ROV videography data, benthic grab samples, weekly status reports, safety and health plan, accident prevention plan, draft final written report, and a final written report/data submissions to the Contracting Officer's Representative (COR) and NCOSA/NCSHPO, where applicable.

<u>XYZ Multibeam Bathymetric Data</u>. The Contractor shall deliver multibeam data in XYZ format. The datasets shall meet USACE surveying standards and shall be post-processed to correct for tidal variations.

<u>Side Scan Mosaic Raster Data Sets</u>. The Contractor shall deliver Georeferenced Mosaics of the Raster Data sets from the Side Scan Survey. The Raster Data sets shall depict the backscatter information used to map the potential hard bottom areas in the project area. The Raster Data Sets shall be in a format compatible with ESRI ArcView/ArcInfo Version 10.6.

Shapefiles. The Contractor shall deliver Polygon Shapefiles defining the areas of confirmed hard bottom features and associated relief classification within the project area based on ground truth efforts as well as areas of interpolated hard bottom areas that were mapped based on similar backscatter characteristics to ground truthed areas. The Shapefiles shall be in a format compatible with ESRI ArcCatalog/ArcGIS/ArcMap Version 10.6.

Survey Plan. The Contractor shall describe proposed survey methodology such that required data and contract goals are achieved. The survey plan shall be provided to the COR.

geo*dynamics* an NV5 company

W912PM21D0001 W912PM22F0008 (k7ct9ae922654) Page 13 of 20

<u>Metadata Records</u>. A North American Profile of ISO 19115 2003 compliant metadata record for each spatial data deliverable and/or feature class shall be created so that they are compatible with ESRI ArcCatalog/ArcGIS/ArcMap Version 10.6. Appropriate information shall be entered in all required fields. The Contractor shall attach the appropriate metadata record to each feature class using ArcCatalog so that no importing or formatting of the metadata record is required by the Government. The metadata shall be Spatial Data Standards for Facilities Infrastructure and Environment (SDSFIE) compliant.

ROV Videography Data. All ROV videography ground truth data shall be provided electronically (or by DVD hardcopy) in a format playable in Windows Media Player and shall be organized and labeled by site location.

Benthic Grab Samples. All benthic grab samples shall be provided in sealed containers and labeled by sample location and sediment classification.

Weekly Status Reports. The Contractor is required to submit a weekly status report, beginning one week from the task order award date, until all deliverables are received and accepted by the Government. The status report shall itemize each scope item with percent of work complete and an estimated data of completion. The report shall also include the number and type of field crews working, a description of any problems, and/or delays encountered, and any photographs of the site and/or significant site features and/or specialized data collection activities.

<u>Safety and Health Plan</u>. The Contractor shall submit a safety and health plan to the COR describing how survey and health will be addressed during required work.

Accident Prevention Plan. The Contractor shall submit an accident prevention plan to the COR describing how the accidents will be reduced/prevented/addressed during required work.

Draft/Final Written Report and Data Submissions. The Contractor shall submit draft / final written reports and data submissions as are described above in this SOW.

12. Project Points of Contact

The Corps' points of contact are provided below: Technical Manager and Contracting Officer's Representative Mr. Justin Bashaw (CESAW-ECP-PE) U.S. Army Corps of Engineers 69 Darlington Ave. Wilmington, NC 28403 Phone: (910) 251-4581 Email: Justin.P.Bashaw@usace.army.mil Contracting Officer Ms. Ros Shoemaker (CESAW-CT) U.S. Army Corps of Engineers 69 Darlington Ave. Wilmington, NC 28403 Phone: (910) 251-4436 Email: Rosalind.M.Shoemaker@usace.army.mil

13. <u>Payment / Request for Proposal.</u> The Contractor's offer shall include all provisions for weather delays, equipment repair and adjustment, holidays, etc. Payments shall be made on a monthly basis upon receipt and acceptance by the Contracting Officer's Representative of a monthly progress letter and invoice. Invoices shall not be processed unless a progress letter has been provided that

an NV5 company

W912PM21D0001 W912PM22F0008 (k7ct9ae922654) Page 14 of 20

indicates in detail the progress of work during the billing period. Payment of partial or final invoices may be withheld until all deliverables are received and accepted by the Wilmington District.

Contract	Line	Item	Number	(CLIN)	
----------	------	------	--------	--------	--

ITEM NO	SUPPLIES/SERVICES	QUANTITY		UNIT	UNIT PRICE
0001	Hydrographic / Cultural Resources Survey, Hardbottom Ground Truthing		1	LS	\$
OPTION 0002	Additional Phase 2 Hydrographic Survey day(s) NTE 3 days		1	Survey day	\$

While the proposed contract has lump sum unit prices, to facilitate discussions and determine a fair and reasonable price proposal, the cost proposal should include a subtotal for each of the following specific tasks identified in the scope of work:

Task 1	Hydrographic Survey – Phase I – Multibeam Survey
Task 2	Hydrographic Survey – Phase II – Draft/Final Written Report
Task 3	Cultural Resources Survey – Phase I – Archival/Background Research
Task 4	Cultural Resources Survey – Phase II – Field Work
Task 5	Cultural Resources Survey – Phase III – Remote Sensing Data Analysis
Task 6	Cultural Resources Survey – Phase IV – Survey Report and Data Submissions
Task 7	Hard Bottom Ground Truthing

13. <u>Ownership.</u> All Contractor submittals including digital files, compact disks, hard-copy products, and source data acquired for this project, and related materials, including that furnished by the Government, shall become the property of the Government and shall not be issued, distributed, or published by the Contractor without permission from the Contracting Officer.

- 14. Quality Control. If work is found to be in error, incomplete, illegible or unsatisfactory after assignment is completed, the Contractor shall be liable for all cost in connection with correcting such errors. Corrective work may be performed by Government personnel or Contractor personnel at the discretion of the Contracting Officer. In any event, the Contractor shall be responsible for all costs incurred for correction of such errors, including salaries, transportation expenses, equipment rental, supervision, and any other costs in connection therewith.
- <u>Government Provided Data</u>. The Government will provide survey boundary polygons (i.e., polygon featured in Figure 1) to the Contractor in ESRI shapefile format.
- 16. <u>Schedules</u>. The tasks contained in this Description of Services shall be completed according to the Table 1 schedule. Adjustments to the schedule must be previously approved by the Contracting Officer. The work shall proceed in a continuous stepwise manner until complete.

geodynami 0 an NV5 company

W912PM21D0001 W912PM22F0008 (k7ct9ae922654) Page 15 of 20

Table 1 Schedule

Calenda	Estimated Schedule Calendar Days After Award		
Kick-off Meeting	5		
Submit Draft Work / Safety and Activity Hazard Analysis Plan for COR review	10		
Submit Final Work / Safety and Activity Hazard Analysis Plan	15		
Begin Field Work / Assessment	30		
Complete Field Work	60		
Submit Executive Summary	74		
Submit Draft Report	94		
Submit Final Report	135		

geodynamics

W912PM21D0001 W912PM22F0008 (k7ct9ae922654) Page 16 of 20

Figure 1. Survey Limits.

geodynamics 0 AN NV5 COMPANY

W912PM21D0001 W912PM22F0008 (k7ct9ae922654) Page 17 of 20

Attachment 1

North Carolina State Historic Preservation Office Letter ER-20-1245

October 25, 2021

geodynamics

W912PM21D0001 W912PM22F0008 (k7ct9ae922654) Page 18 of 20

North Carolina Department of Natural and Cultural Resources State Historic Preservation Office Namoa M. Baros. Administrator

Governor Roy Cooper Secretary D. Reid Wilson Office of Archives and History Deputy Secretary, Darin J. Waters, Ph.D.

October 25, 2021

Teresa R. Young Biologist, USACE Wilmington District 69 Darlington Ave. Wilmington, NC 28403 910-251-4725 (office) teresa.r.young@usace.army.mil

RE: Coastal Storm Risk Management (CSRM) plan, Town of Wrightsville Beach, New Hanover County, ER 20-1245

Dear Ms. Young:

Thank you for your October 6, 2021, submission concerning the above-referenced project. We have reviewed the project and offer the following comments.

While it is unlikely that any archaeological sites will be impacted by the beach renourishment on shore, to our knowledge the chosen offshore borrow area has not been surveyed.

Due to its proximity to Masonboro inlet which has seen historic maritime traffic, as well as the nine recorded archaeological shipwreck sites within the area stated on our last letter, we request that a comprehensive maritime survey be conducted of the chosen offshore borrow area.

The purpose of this survey is to identify archaeological sites and make recommendations regarding their eligibility status in terms of the NRHP. This work should be conducted by an experienced archaeologist that meets the Secretary of the Interior professional qualifications standards. A list of archaeological consultants who have conducted or expressed an interest in contract work in North Carolina is available at https://archaeology.ndcr.gov/archaeological-consultant-list. The archaeologists listed, or any other experienced archaeologist, may be contacted to conduct the recommended survey. *Please note that our office requests consultation with the Office of State Archaeology Review Archaeologist to discuss appropriate field methodologies prior to the archaeological field investigation*.

One paper copy and one digital copy (PDF) of all resulting archaeological reports, as well as a digital copy (PDF) of the North Carolina Site Form for each site recorded, should be forwarded to the Office of State Archaeology (OSA) through this office, for review and comment as soon as they are available and in advance of any construction or ground disturbance activities. OSA's Archaeological Standards and Guidelines for Background Research, Field Methodologies, Technical Reports, and Curation can be found online at: https://files.nc.gov/dncr-arch/OSA_Guidelines_Dec2017.pdf.

Location: 109 Fast Jones Street, Raleigh NC 27601 Mailing Address: 4617 Mail Service Center, Raleigh NC 27699-4617 Telephone/Fax: (919) 814-6570/814-6898

geodynamics

W912PM21D0001 W912PM22F0008 (k7ct9ae922654) Page 19 of 20

ER 20-1245, October 25, Page 2 of 2

We have determined that the project as proposed will not have an effect on any historic structures.

The above comments are made pursuant to Section 106 of the National Historic Preservation Act and the Advisory Council on Historic Preservation's Regulations for Compliance with Section 106 codified at 36 CFR Part 800.

Thank you for your cooperation and consideration. If you have questions concerning the above comments, please contact Renee Gledhill-Earley, environmental review coordinator, at 919-814-6579 or <u>environmental.review@ncdcr.gov</u>. In all future communication concerning this project, please cite the above-referenced tracking number.

Sincerely,

Rence Dedhill-Earley

Ramona Bartos, Deputy State Historic Preservation Officer

Location: 109 East Jones Street, Raleigh NC 27601 Mailing Address: 4617 Mail Service Center, Raleigh NC 27699-4617 Telephone/Fax: (919) 814-6570/814-6898

geodynamics 0 AN NV5 COMPANY

W912PM21D0001 W912PM22F0008 (k7ct9ae922654) Page 20 of 20

The following have been deleted: <u>SCOPE OF WORK</u>

(End of Summary of Changes)